Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip R. Musich is active.

Publication


Featured researches published by Phillip R. Musich.


Journal of Biological Chemistry | 2009

Checkpoint Kinase ATR Promotes Nucleotide Excision Repair of UV-induced DNA Damage via Physical Interaction with Xeroderma Pigmentosum Group A

Steven M. Shell; Zhengke Li; Nikolozi Shkriabai; Mamuka Kvaratskhelia; Chris A. Brosey; Moises A. Serrano; Walter J. Chazin; Phillip R. Musich; Yue Zou

In response to DNA damage, eukaryotic cells activate a series of DNA damage-dependent pathways that serve to arrest cell cycle progression and remove DNA damage. Coordination of cell cycle arrest and damage repair is critical for maintenance of genomic stability. However, this process is still poorly understood. Nucleotide excision repair (NER) and the ATR-dependent cell cycle checkpoint are the major pathways responsible for repair of UV-induced DNA damage. Here we show that ATR physically interacts with the NER factor Xeroderma pigmentosum group A (XPA). Using a mass spectrometry-based protein footprinting method, we found that ATR interacts with a helix-turn-helix motif in the minimal DNA-binding domain of XPA where an ATR phosphorylation site (serine 196) is located. XPA-deficient cells complemented with XPA containing a point mutation of S196A displayed a reduced repair efficiency of cyclobutane pyrimidine dimers as compared with cells complemented with wild-type XPA, although no effect was observed for repair of (6-4) photoproducts. This suggests that the ATR-dependent phosphorylation of XPA may promote NER repair of persistent DNA damage. In addition, a K188A point mutation of XPA that disrupts the ATR-XPA interaction inhibits the nuclear import of XPA after UV irradiation and, thus, significantly reduced DNA repair efficiency. By contrast, the S196A mutation has no effect on XPA nuclear translocation. Taken together, our results suggest that the ATR-XPA interaction mediated by the helix-turn-helix motif of XPA plays an important role in DNA-damage responses to promote cell survival and genomic stability after UV irradiation.


Oncogene | 2013

DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair.

Moises A. Serrano; Zhengke Li; Mohan Dangeti; Phillip R. Musich; Steve M. Patrick; Marina Roginskaya; Brian M. Cartwright; Yue Zou

Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53–RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53–RPA interaction by DNA-PK, ATM and ATR.


Biochemical Society Transactions | 2011

DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome.

Phillip R. Musich; Yue Zou

A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression.


Nutrition and Cancer | 2009

Gamma tocopherol upregulates the expression of 15-S-HETE and induces growth arrest through a PPAR gamma-dependent mechanism in PC-3 human prostate cancer cells.

Sharon Campbell; Phillip R. Musich; Sarah Whaley; Julie B. Stimmel; Lisa M. Leesnitzer; Sophie Dessus-Babus; Michelle Duffourc; William L. Stone; Robert A. Newman; Peiying Yang; Koyamangalath Krishnan

Chronic inflammation and dietary fat consumption correlates with an increase in prostate cancer. Our previous studies in the colon have demonstrated that γ-tocopherol treatment could upregulate the expression of peroxisome proliferator-activated preceptors (PPAR) γ, a nuclear receptor involved in fatty acid metabolism as well modulation of cell proliferation and differentiation. In this study, we explored the possibility that γ-tocopherol could induce growth arrest in PC-3 prostate cancer cells through the regulation of fatty acid metabolism. Growth arrest (40%) and PPAR γ mRNA and protein upregulation was achieved with γ-tocopherol within 6 h. γ-Tocopherol-mediated growth arrest was demonstrated to be PPAR γ dependent using the agonist GW9662 and a PPAR γ dominant negative vector. γ-tocopherol was shown not to be a direct PPAR γ ligand, but rather 15-S-HETE (an endogenous PPAR γ ligand) was upregulated by γ-tocopherol treatment. 15-Lipoxygenase-2, a tumor suppressor and the enzyme that converts arachidonic acid to 15-S-HETE, was upregulated at 3 h following γ-tocopherol treatment. Expression of proteins downstream of the PPAR γ pathway were examined. Cyclin D1, cyclin D3, bcl-2, and NFκ B proteins were found to be downregulated following γ-tocopherol treatment. These data demonstrate that the growth arrest mediated by γ-tocopherol follows a PPAR-γ-dependent mechanism.


PLOS ONE | 2011

XPA-Mediated Regulation of Global Nucleotide Excision Repair by ATR Is p53-Dependent and Occurs Primarily in S-Phase

Zhengke Li; Phillip R. Musich; Moises A. Serrano; Zhiping Dong; Yue Zou

Cell cycle checkpoints play an important role in regulation of DNA repair pathways. However, how the regulation occurs throughout the cell cycle remains largely unknown. Here we demonstrate that nucleotide excision repair (NER) is regulated by the ATR/p53 checkpoint via modulation of XPA nuclear import and that this regulation occurs in a cell cycle-dependent manner. We show that depletion of p53 abrogated the UV-induced nuclear translocation of XPA, while silencing of Chk1 or MAPKAP Kinase-2 (MK2) had no effect. Inhibition of p53 transcriptional activities and silencing of p53-Ser15 phosphorylation also reduced the damage-induced XPA nuclear import. Furthermore, in G1-phase cells the majority of XPA remained in the cytoplasm even after UV treatment. By contrast, while most of the XPA in S-phase cells was initially located in the cytoplasm before DNA damage, UV irradiation stimulated bulk import of XPA into the nucleus. Interestingly, the majority of XPA molecules always were located in the nucleus in G2-phase cells no matter whether the DNA was damaged or not. Consistently, the UV-induced Ser15 phosphorylation of p53 occurred mainly in S-phase cells, and removal of cyclobutane pyrimidine dimers (CPDs) was much more efficient in S-phase cells than in G1-phase cells. Our results suggest that upon DNA damage in S phase, NER could be regulated by the ATR/p53-dependent checkpoint via modulation of the XPA nuclear import process. In contrast, the nuclear import of XPA in G1 or G2 phase appears to be largely independent of DNA damage and p53.


Molecular Cell | 2015

ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is Regulated by Prolyl Isomerase Pin1

Benjamin Hilton; Zhengke Li; Phillip R. Musich; Hui Wang; Brian M. Cartwright; Moises A. Serrano; Xiao Zhen Zhou; Kun Ping Lu; Yue Zou

ATR, a PI3K-like protein kinase, plays a key role in regulating DNA damage responses. Its nuclear checkpoint kinase function is well documented, but little is known about its function outside the nucleus. Here we report that ATR has an antiapoptotic activity at mitochondria in response to UV damage, and this activity is independent of its hallmark checkpoint/kinase activity and partner ATRIP. ATR contains a BH3-like domain that allows ATR-tBid interaction at mitochondria, suppressing cytochrome c release and apoptosis. This mitochondrial activity of ATR is downregulated by Pin1 that isomerizes ATR from cis-isomer to trans-isomer at the phosphorylated Ser428-Pro429 motif. However, UV inactivates Pin1 via DAPK1, stabilizing the pro-survival cis-isomeric ATR. In contrast, nuclear ATR remains in the trans-isoform disregarding UV. This cytoplasmic response of ATR may provide a mechanism for the observed antiapoptotic role of ATR in suppressing carcinogenesis and its inhibition in sensitizing anticancer agents for killing of cancer cells.


Journal of Molecular Evolution | 1986

Sequence and evolution of rhesus monkey alphoid DNA

Lee M. Pike; Anette Carlisle; Chris Newell; Seung-Beom Hong; Phillip R. Musich

SummaryAnalysis of rhesus monkey alphoid DNA suggests that it arose by tandem duplication of an ancestral monomer unit followed by independent variation within two adjacent monomers (one becoming more divergent than the other) before their amplification as a dimer unit to produce tandem arrays. The rhesus monkey alphoid DNA is a tandemly repeated, 343-bp dimer; the consensus dimer is over 98% homologous to the alphoid dimers reported for baboon and bonnet monkey, 81% homologous to the African green monkey alpha monomer, and less than 70% homologous to the more divergent human alphoid DNAs. The consensus dimer consists of two wings (I and II, 172 and 171 bp, respectively) that are only 70% homologous to each other, but share seven regions of exact homology. These same regions are highly conserved among the consensus sequences of the other cercopithecid alphoid DNAs. The three alpha-protein binding sites reported for African green monkey alpha DNA by F. Strauss and A. Varshavsky (Cell 37: 889–901, 1984) occur in wings I and II, but with one site altered in wing I. Two cloned dimer segments are 98% homologous to the consensus, each containing 8 single-base-pair differences within the 343-bp segment. Surprisingly, 37% of these differences occur in regions that are evolutionarily conserved in the alphoid consensus sequences, including the alpha-protein binding sites. Sequence variation in this highly repetitive DNA family may produce unique nucleosomal architectures for different members of an alphoid array. These unique architectures may modulate the evolution of these repetitive DNAs and may produce unique centromeric characteristics in primate chromosomes.


PLOS ONE | 2013

UV-induced nuclear import of XPA is mediated by importin-α4 in an ATR-dependent manner.

Zhengke Li; Phillip R. Musich; Brian M. Cartwright; Hui Wang; Yue Zou

Xeroderma pigmentosum Group A (XPA) is a crucial factor in mammalian nucleotide excision repair (NER) and nuclear import of XPA from the cytoplasm for NER is regulated in cellular DNA damage responses in S-phase. In this study, experiments were carried out to determine the transport mechanisms that are responsible for the UV (ultraviolet)-induced nuclear import of XPA. We found that, in addition to the nuclear localization signal (NLS) of XPA, importin-α4 or/and importin-α7 are required for the XPA nuclear import. Further investigation indicated that, importin-α4 and importin-α7 directly interacted with XPA in cells. Interestingly, the binding of importin-α4 to XPA was dependent on UV-irradiation, while the binding of importin-α7 was not, suggesting a role for importin-α7 in nuclear translocation of XPA in the absence of DNA damage, perhaps with specificity to certain non-S-phases of the cell-cycle. Consistent with the previous report of a dependence of UV-induced XPA nuclear import on ataxia telangiectasia and Rad3-related protein (ATR) in S-phase, knockdown of ATR reduced the amount of XPA interacting with importin-α4. In contrast, the GTPase XPA binding protein 1 (XAB1), previously proposed to be required for XPA nuclear import, showed no effect on the nuclear import of XPA in our siRNA knockdown analysis. In conclusion, our results suggest that upon DNA damage transport adaptor importin-α4 imports XPA into the nucleus in an ATR-dependent manner, while XAB1 has no role in this process. In addition, these findings reveal a potential new therapeutic target for the sensitization of cancer cells to chemotherapy.


Neurotoxicity Research | 2014

Effects of DSP4 on the Noradrenergic Phenotypes and Its Potential Molecular Mechanisms in SH-SY5Y Cells

Yan Wang; Phillip R. Musich; Moises A. Serrano; Yue Zou; Jia Zhang; Meng-Yang Zhu

Dopamine β-hydroxylase (DBH) and norepinephrine (NE) transporter (NET) are the noradrenergic phenotypes for their functional importance to noradrenergic neurons. It is known that in vivo N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) treatment induces degeneration of noradrenergic terminals by interacting with NET and depleting intracellular NE. However, DSP4’s precise mechanism of action remains unclear. In this study various biochemical approaches were employed to test the hypothesis that DSP4 down-regulates the expression of DBH and NET, and to determine molecular mechanisms that may be involved. The results showed that treatment of SH-SY5Y neuroblastoma cells with DSP4 significantly decreased mRNA and protein levels of DBH and NET. DSP4-induced reduction of DBH mRNA and proteins, as well as NET proteins showed a time- and concentration-dependent manner. Flow cytometric analysis demonstrated that DSP4-treated cells were arrested predominantly in the S-phase, which was reversible. The arrest was confirmed by several DNA damage response markers (phosphorylation of H2AX and p53), suggesting that DSP4 causes replication stress which triggers cell cycle arrest via the S-phase checkpoints. Moreover, the comet assay verified that DSP4 induced single-strand DNA breaks. In summary, the present study demonstrated that DSP4 down-regulates the noradrenergic phenotypes, which may be mediated by its actions on DNA replication, leading to replication stress and cell cycle arrest. These action mechanisms of DSP4 may account for its degenerative consequence after systematic administration for animal models.


Bioscience Reports | 2014

A new structural insight into XPA-DNA interactions.

Benjamin Hilton; Nick Shkriabai; Phillip R. Musich; Mamuka Kvaratskhelia; Steven M. Shell; Yue Zou

XPA (xeroderma pigmentosum group A) protein is an essential factor for NER (nucleotide excision repair) which is believed to be involved in DNA damage recognition/verification, NER factor recruiting and stabilization of repair intermediates. Past studies on the structure of XPA have focused primarily on XPA interaction with damaged DNA. However, how XPA interacts with other DNA structures remains unknown though recent evidence suggest that these structures could be important for its roles in both NER and non-NER activities. Previously, we reported that XPA recognizes undamaged DNA ds/ssDNA (double-strand/single-strandDNA) junctions with a binding affinity much higher than its ability to bind bulky DNA damage. To understand how this interaction occurs biochemically we implemented a structural determination of the interaction using a MS-based protein footprinting method and limited proteolysis. By monitoring surface accessibility of XPA lysines to NHS-biotin modification in the free protein and the DNA junction-bound complex we show that XPA physically interacts with the DNA junctions via two lysines, K168 and K179, located in the previously known XPA(98–219) DBD (DNA-binding domain). Importantly, we also uncovered new lysine residues, outside of the known DBD, involved in the binding. We found that residues K221, K222, K224 and K236 in the C-terminal domain are involved in DNA binding. Limited proteolysis analysis of XPA–DNA interactions further confirmed this observation. Structural modelling with these data suggests a clamp-like DBD for the XPA binding to ds/ssDNA junctions. Our results provide a novel structure-function view of XPA–DNA junction interactions.

Collaboration


Dive into the Phillip R. Musich's collaboration.

Top Co-Authors

Avatar

Yue Zou

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Zhengke Li

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Benjamin Hilton

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Brian M. Cartwright

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Moises A. Serrano

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Steven M. Shell

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Tang

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

East Tennessee State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge