Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip R. Myer is active.

Publication


Featured researches published by Phillip R. Myer.


PLOS ONE | 2015

Rumen Microbiome from Steers Differing in Feed Efficiency

Phillip R. Myer; T. P. L. Smith; J. E. Wells; L. A. Kuehn; H. C. Freetly

The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency.


Environmental Science & Technology | 2012

Response of Soil Microorganisms to As-Produced and Functionalized Single-Wall Carbon Nanotubes (SWNTs)

Zhonghua Tong; Marianne Bischoff; Loring Nies; Phillip R. Myer; Bruce M. Applegate; Ronald F. Turco

The use of single-wall carbon nanotubes (SWNTs) in manufacturing and biomedical applications is increasing at a rapid rate; however data on the effects of a potential environmental release of the materials remain sparse. In this study, soils with either low or high organic matter contents as well as pure cultures of E. coli are challenged with either raw as-produced SWNTs (AP-SWNTs) or SWNTs functionalized with either polyethyleneglycol (PEG-SWNTs) or m-polyaminobenzene sulfonic acid (PABS-SWNTs). To mimic chronic exposure, the soil systems were challenged weekly for six weeks; microbial activities and community structures for both the prokaryote and eukaryote community were evaluated. Results show that repeated applications of AP-SWNTs can affect microbial community structures and induce minor changes in soil metabolic activity in the low organic matter systems. Toxicity of the three types of SWNTs was also assessed in liquid cultures using a bioluminescent E. coli-O157:H7 strain. Although decreases in light were detected in all treated samples, low light recovery following glucose addition in AP-SWNTs treatment and light absorption property of SWNTs particles suggest that AP-SWNTs suppressed metabolic activity of the E. coli, whereas the two functionalized SWNTs are less toxic. The metals released from the raw forms of SWNTs would not play a role in the effects seen in soil or the pure culture. We suggest that sorption to soil organic matter plays a controlling role in the soil microbiological responses to these nanomaterials.


Journal of Animal Science | 2016

Microbial community profiles of the jejunum from steers differing in feed efficiency

Phillip R. Myer; J. E. Wells; T. P. L. Smith; L. A. Kuehn; H. C. Freetly

Research regarding the association between the microbial community and host feed efficiency in cattle has primarily focused on the rumen. However, the various microbial populations within the gastrointestinal tract as a whole are critical to the overall well-being of the host and need to be examined when determining the interplay between host and nonhost factors affecting feed efficiency. The objective of this study was to characterize the microbial communities of the jejunum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual ADFI and ADG were determined from animals fed the same diet. At the end of each feeding period, steers were ranked based on their standardized distance from the bivariate mean (ADG and ADFI). Four steers with the greatest deviation within each Cartesian quadrant were sampled ( = 16/group; 2 groups). Bacterial 16S rRNA gene amplicons were sequenced from the jejunum content using next-generation sequencing technology. The phylum Firmicutes accounted for up to 90% of the populations within all samples and was dominated by the families Clostridiaceae and Ruminococcaceae. UniFrac principal coordinate analyses did not indicate any separation of microbial communities within the jejunum based on feed efficiency phenotype, and no significant changes were indicated by bacterial diversity or richness metrics. The relative abundances of microbial populations and operational taxonomic units did reveal significant differences between feed efficiency groups ( < 0.05), including the phylum Proteobacteria ( = 0.030); the families Lachnospiraceae ( = 0.035), Coriobacteriaceae ( = 0.012), and Sphingomonadaceae ( = 0.035); and the genera ( = 0.019), ( = 0.018), and ( = 0.022). The study identified jejunal microbial associations with feed efficiency, ADG, and ADFI. This study suggests the association of the jejunum microbial community as a factor influencing feed efficiency at the 16S level.


Journal of Animal Science | 2015

Cecum microbial communities from steers differing in feed efficiency

Phillip R. Myer; J. E. Wells; T. P. L. Smith; L. A. Kuehn; H. C. Freetly

Apart from the rumen, limited knowledge exists regarding the structure and function of bacterial communities within the gastrointestinal tract and their association with beef cattle feed efficiency. The objective of this study was to characterize the microbial communities of the cecum among steers differing in feed efficiency. Within 2 contemporary groups of steers, individual feed intake and BW gain were determined from animals fed the same diet. Within both of 2 contemporary groups, BW was regressed on feed intake and 4 steers within each Cartesian quadrant were sampled ( = 16/group). Bacterial 16S rRNA gene amplicons were sequenced from the cecal content using next-generation sequencing technology. No significant changes in diversity or richness were detected among quadrants, and UniFrac principal coordinate analysis did not show any differences among quadrants for microbial communities within the cecum. The relative abundances of microbial populations and operational taxonomic units revealed significant differences among feed efficiency groups ( < 0.05). Firmicutes was the dominant cecal phylum in all groups and accounted for up to 81% of the populations among samples. Populations were also dominated by families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae, with significant shifts in the relative abundance of taxa among feed efficiency groups, including families Ruminococcaceae ( = 0.040), Lachnospiraceae ( = 0.020), Erysipelotrichaceae ( = 0.046), and Clostridiaceae ( = 0.043) and genera ( = 0.049), ( = 0.044), ( = 0.042), ( = 0.040), ( = 0.042), and ( = 0.042). The study identified cecal microbial associations with feed efficiency, ADG, and ADFI. This study suggests an association of the cecum microbial community with bovine feed efficiency at the 16S level.


Journal of Animal Science | 2015

Methane production and methanogen levels in steers that differ in residual gain.

H. C. Freetly; A. K. Lindholm-Perry; K. E. Hales; Tami M. Brown-Brandl; M. Kim; Phillip R. Myer; J. E. Wells

Methane (CH4) gas released by cattle isa product of fermentation in the digestive tract. The 2 primary sites of CH4 production in ruminants are the reticulum-rumen complex and the cecum. Methane release from cattle represents a 2% to 12% loss of the energy intake. Reducing the proportion of feed energy lost as CH4 has the potential of improving feed efficiency as well as decreasing the contribution of cattle to greenhouse gas production. Feed intake and growth were measured on 132 fall-born steers for 70 d. Seven steers with extreme positive residual gain (RG) and 7 steers with extreme negative RG whose DMI was within 0.32 SD of the mean intake were selected for subsequent measurements. Enteric CH4 production was measured via indirect calorimetry. Rumen, cecum, and rectal contents were obtained from steers at slaughter for measurement of in vitro CH4 production and methanogen 16S rRNA levels. Enteric CH4 production did not differ (P = 0.11) between the positive RG (112 ± 13 L/d)and the negative RG (74 ± 13 L/d) steers. In vitro rumen methane production did not differ between positive RG(64.26 × 10(-5) ± 10.85 × 10(-5) mmol∙g(-1) DM∙min(-1)) and negative RG (61.49 × 10(-5) ± 10.85 × 10(-5) mmol∙g(-1)DM∙min(-1); P = 0.86). In vitro cecum methane production did not differ between positive RG (4.24 ×10(-5) ± 1.90 × 10(-5) mmol∙g(-1) DM∙min(-1)) and negative RG (4.35 × 10(-5) ± 1.90 × 10(-5) mmol∙g(-1) DM∙min(-1); P = 0.97). Methanogen 16S rRNA as a percentage of the total bacteria16S rRNA did not differ between RG groups (P = 0.18). The methanogen 16S rRNA as a percentage of rumen fluid total bacteria 16S rRNA (5.3% ±3.1%) did not differ from the methanogen 16S rRNA asa percentage of cecum content total bacteria 16S rRNA(11.8% ± 3.1%; P = 0.14). The methanogen 16S rRNA as a percentage of the rectum content total bacteria 16SrRNA (0.7% ± 3.1%) was not different from the rumen content (P = 0.29) but was less than the cecum content(P = 0.01). Methanomicrobiales 16S rRNA as a percentage of total methanogen 16S rRNA did not differ across sample sites (P = 0.81); however, steers with positive RG (10.5% ± 1.6%) were more numerous than steers with negative RG (5.1% ± 1.6%; P = 0.02). Cattle that differ in RG at the same DMI do not differ in characteristics associated with CH4 production.


Data in Brief | 2016

Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers

Phillip R. Myer; MinSeok Kim; H. C. Freetly; T. P. L. Smith

Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustion during sequencing. To further examine theses biases, data is provided from 16S rRNA rumen community analyses. Specifically, data from the relative phylum-level abundances for the ruminal bacterial community are provided to determine between-sample variability. Direct sequencing of metagenomic DNA was conducted to circumvent primer-associated biases in 16S rRNA reads and rarefaction curves were generated to demonstrate adequate coverage of each amplicon. PCR products were also subjected to reduced amplification and pooling to reduce the likelihood of PCR product exhaustion during sequencing on the Pacific Biosciences platform. The taxonomic profiles for the relative phylum-level and genus-level abundance of rumen microbiota as a function of PCR pooling for sequencing on the Pacific Biosciences RSII platform were provided. For more information, see “Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers” P.R. Myer, M. Kim, H.C. Freetly, T.P.L. Smith (2016) [1].


Metabolomics | 2017

Serum metabolites associated with feed efficiency in black angus steers

Brooke A. Clemmons; Robert I. Mihelic; Ronique C. Beckford; Joshua B. Powers; Emily A. Melchior; Z. D. McFarlane; E. R. Cope; Mallory M. Embree; J. Travis Mulliniks; Shawn R. Campagna; Brynn H. Voy; Phillip R. Myer

IntroductionImproving feed utilization in cattle is required to reduce input costs, increase production, and ultimately improve sustainability of the beef cattle industry. Characterizing metabolic differences between efficient and non-efficient animals will allow stakeholders to identify more efficient cattle during backgrounding.ObjectivesThis study used an untargeted metabolomics approach to determine differences in serum metabolites between animals of low and high residual feed intake.MethodsResidual feed intake was determined for 50 purebred Angus steers and 29 steers were selected for the study steers based on low versus high feed efficiency. Blood samples were collected from steers and analyzed using untargeted metabolomics via mass spectrometry. Metabolite data was analyzed using Metaboanalyst, visualized using orthogonal partial least squares discriminant analysis, and p-values derived from permutation testing. Non-esterified fatty acids, urea nitrogen, and glucose were measured using commercially available calorimetric assay kits. Differences in metabolites measured were grouped by residual feed intake was measured using one-way analysis of variance in SAS 9.4.ResultsFour metabolites were found to be associated with differences in feed efficiency. No differences were found in other serum metabolites, including serum urea nitrogen, non-esterified fatty acids, and glucose.ConclusionsFour metabolites that differed between low and high residual feed intake have important functions related to nutrient utilization, among other functions, in cattle. This information will allow identification of more efficient steers during backgrounding.


Frontiers in Microbiology | 2017

Vaginal and Uterine Bacterial Communities in Postpartum Lactating Cows

Brooke A. Clemmons; S. T. Reese; Felipe G. Dantas; G. A. Franco; T. P. L. Smith; Olusoji I. Adeyosoye; K. G. Pohler; Phillip R. Myer

Reproductive inefficiency in cattle has major impacts on overall productivity of cattle operations, increasing cost of production, and impacting the sustainability of the cattle enterprise. Decreased reproductive success and associated disease states have been correlated with the presence of specific microbes and microbial community profiles, yet details of the relationship between microbial communities and host physiology are not well known. The present study profiles and compares the microbial communities in the bovine uterus and vagina using 16S rRNA sequencing of the V1–V3 hypervariable region at the time of artificial insemination. Significant differences (p < 0.05) between the vaginal and uterine communities were observed at the level of α-diversity metrics, including Chao1, Shannon’s Diversity Index, and observed OTU. Greater clustering of vaginal OTU was apparent in principal coordinate analysis compared to uterine OTU, despite greater diversity in the vaginal community in both weighted and unweighted UniFrac distance matrices (p < 0.05). There was a significantly greater relative abundance of unassigned taxa in the uterus (p = 0.008), otherwise there were few differences between the overall community profiles. Both vaginal and uterine communities were dominated by Firmicutes, although the relative abundance of rRNA sequences corresponding to species in this phylum was significantly (p = 0.007) lower in the uterine community. Additional differences were observed at the genus level, specifically in abundances within Clostridium (p = 0.009), Anaerofustis (p = 0.018), Atopobium (p = 0.035), Oscillospira (p = 0.035), 5-7N15 (p = 0.035), Mycoplasma (p = 0.035), Odoribacter (p = 0.042), and within the families Clostridiaceae (p = 0.006), Alcaligenaceae (p = 0.021), and Ruminococcaceae (p = 0.021). Overall, the comparison revealed differences and commonalities among bovine reproductive organs, which may be influenced by host physiology. The increased abundance of unassigned taxa found in the uterus may play a significant biological role in the reproductive status of the animal. The study represents an initial dataset for comparing bacterial communities prior to establishment of pregnancy.


bioRxiv | 2018

Effects of endophyte infected tall fescue seed and red clover isoflavones on rumen microbial populations, fiber fermentation, and volatile fatty acids in vitro

Emily A. Melchior; J. Travis Mulliniks; Jason K. Smith; Gary E. Bates; Liesel G. Schneider; Z. D. McFarlane; Michael D. Flythe; J. L. Klotz; Jack P. Goodman; Huihua Ji; Phillip R. Myer

Negative impacts of endophyte-infected Lolium arundinaceum (Darbyshire) (tall fescue) are responsible for over


PLOS ONE | 2018

Effects of red clover isoflavones on tall fescue seed fermentation and microbial populations in vitro

Emily A. Melchior; Jason K. Smith; Liesel G. Schneider; J. Travis Mulliniks; Gary E. Bates; Z. D. McFarlane; Michael D. Flythe; J. L. Klotz; Jack P. Goodman; Huihua Ji; Phillip R. Myer

2 billion in losses to livestock producers annually. While the influence of endophyte-infected tall fescue has been studied for decades, mitigation methods have not been clearly elucidated. Isoflavones found in Trifolium pretense (red clover) have been the subject of recent research regarding tall fescue toxicosis mitigation. Therefore, the aim of this study was to determine the effect of ergovaline and red clover isoflavones on rumen microbial populations, fiber degradation, and volatile fatty acids (VFA) in an in vitro system. Using a dose of 1.10 mg × L−1, endophyte-infected or endophyte-free tall fescue seed was added to ANKOM fiber bags with or without 2.19 mg of isoflavones in the form of a control, powder, or pulverized tablet, resulting in a 2 × 3 factorial arrangements of treatments. Measurements of pH, VFA, bacterial taxa, as well as the disappearance of neutral detergent fiber (aNDF), acid detergent fiber (ADF), and crude protein (CP) were taken after 48 h of incubation. aNDF disappearance values were significantly altered by seed type (P = 0.003) and isoflavone treatment (P = 0.005), and ADF disappearance values were significantly different in a seed x isoflavone treatment interaction (P ≤ 0.05). A seed x isoflavone treatment interaction was also observed with respect to CP disappearance (P ≤ 0.05). Seventeen bacterial taxa were significantly altered by seed x isoflavone treatment interaction groups (P ≤ 0.05), six bacterial taxa were increased by isoflavones (P ≤ 0.05), and eleven bacterial taxa were altered by seed type (P ≤ 0.05). Due to the beneficial effect of isoflavones on tall fescue seed fiber degradation, these compounds may be viable options for mitigating fescue toxicosis. Further research should be conducted to determine physiological implications as well as microbiological changes in vivo.

Collaboration


Dive into the Phillip R. Myer's collaboration.

Top Co-Authors

Avatar

H. C. Freetly

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

J. E. Wells

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

L. A. Kuehn

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Lindholm-Perry

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Brynn H. Voy

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge