Phillip R. Purnell
University of Nebraska Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phillip R. Purnell.
Journal of Proteome Research | 2014
Kelly L. Stauch; Phillip R. Purnell; Howard S. Fox
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
Molecular Neurobiology | 2016
Lance M. Villeneuve; Phillip R. Purnell; Michael D. Boska; Howard S. Fox
PTEN-induced kinase 1 (PINK1) mutations are responsible for an autosomal recessive, familial form of Parkinson’s disease. PINK1 protein is a Ser/Thr kinase localized to the mitochondrial membrane and is involved in many processes including mitochondrial trafficking, mitophagy, and proteasomal function. Using a new PINK1 knockout (PINK1 KO) rat model, we found altered brain metabolomic markers using magnetic resonance spectroscopy, identified changes in mitochondrial pathways with quantitative proteomics using sequential window acquisition of all theoretical spectra (SWATH) mass spectrometry, and demonstrated mitochondrial functional alterations through measurement of oxygen consumption and acidification rates. The observed alterations included reduced creatine, decreased levels of complex I of the electron transport chain, and increased proton leak in the electron transport chain in PINK1 KO rat brains. In conjunction, these results demonstrate metabolomic and mitochondrial alterations occur during the asymptomatic phase of Parkinson’s disease in this model. These results indicate both potential early diagnostic markers and therapeutic pathways that can be used in PD.
BMC Neuroscience | 2013
Phillip R. Purnell; Howard S. Fox
BackgroundDrp1 is the primary protein responsible for mitochondrial fission. Perturbations of mitochondrial morphology and increased fission are seen in neurodegeneration. While Drp1 degradation induced by Parkin overexpression can be prevented by proteasome inhibition, there are numerous links between proteasomal and autophagic processes in mitochondrial protein degradation. Here we investigated the role of autophagy in Drp1 regulation.ResultsWe demonstrate that autophagy plays a major role in the control of Drp1 levels. In HEK-293T cells, inhibitors of autophagy increase total Drp1 and levels of Drp1 in the mitochondrial cellular fraction. Similarly by silencing ATG7, which is required for initiation of autophagy, there is an increased level of Drp1. Because of the role of increased Drp1 in neurodegeneration, we then examined the ability to modulate Drp1 levels in neurons by inducing autophagy. We are able to decrease Drp1 levels in a time- and dose-dependent manner with the potent neuronal autophagy inducer 10-NCP, as well as structurally related compounds. Further, 10-NCP was able increase average mitochondrial size and length verifying a functional result of Drp1 depletion in these neurons.ConclusionsThese pharmacological and genetic approaches indicate that autophagy targets Drp1 for lysosomal degradation. Additionally these data suggest a mechanism, through Drp1 downregulation, which may partly explain the ability of autophagy to have a neuroprotective effect.
Proteomics | 2015
Kelly L. Stauch; Phillip R. Purnell; Lance M. Villeneuve; Howard S. Fox
Mitochondria are the main cellular source of reactive oxygen species and are recognized as key players in several age‐associated disorders and neurodegeneration. Their dysfunction has also been linked to cellular aging. Additionally, mechanisms leading to the preservation of mitochondrial function promote longevity. In this study we investigated the proteomic and functional alterations in brain mitochondria isolated from mature (5 months old), old (12 months old), and aged (24 months old) mice as determinants of normal “healthy” aging. Here the global changes concomitant with aging in the mitochondrial proteome of mouse brain analyzed by quantitative mass‐spectrometry based super‐SILAC identified differentially expressed proteins involved in several metabolic pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Despite these changes, the bioenergetic function of these mitochondria was preserved. Overall, this data indicates that proteomic changes during aging may compensate for functional defects aiding in preservation of mitochondrial function. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001370 (http://proteomecentral.proteomexchange.org/dataset/PXD001370).
Journal of Pharmacology and Experimental Therapeutics | 2014
Phillip R. Purnell; Howard S. Fox
Efavirenz (EFV) is a non-nucleoside reverse-transcriptase inhibitor in wide use for the treatment of human immunodeficiency virus infection. Although EFV is generally well tolerated, neuropsychiatric toxicity has been well documented. The toxic effects of EFV in hepatocytes and keratinocytes have been linked to mitochondrial perturbations and changes in autophagy. Here, we studied the effect of EFV on mitochondria and autophagy in neuronal cell lines and primary neurons. In SH-SY5Y cells, EFV induced a drop in ATP production, which coincided with increased autophagy, mitochondrial fragmentation, and mitochondrial depolarization. EFV-induced mitophagy was also detected by colocalization of mitochondria and autophagosomes and use of an outer mitochondrial membrane tandem fluorescent vector. Pharmacologic inhibition of autophagy with 3-methyladenine increased the cytotoxic effect of EFV, suggesting that autophagy promotes cell survival. EFV also reduces ATP production in primary neurons, induces autophagy, and changes mitochondrial morphology. Overall, EFV is able to acutely induce autophagy and mitochondrial changes in neurons. These changes may be involved in the mechanism leading to central nervous system toxicity observed in clinical EFV use.
Journal of NeuroVirology | 2016
Lance M. Villeneuve; Phillip R. Purnell; Kelly L. Stauch; Shannon Callen; Shilpa Buch; Howard S. Fox
With the advent of the combination antiretroviral therapy era (cART), the development of AIDS has been largely limited in the USA. Unfortunately, despite the development of efficacious treatments, HIV-1-associated neurocognitive disorders (HAND) can still develop, and as many HIV-1 positive individuals age, the prevalence of HAND is likely to rise because HAND manifests in the brain with very low levels of virus. However, the mechanism producing this viral disorder is still debated. Interestingly, HIV-1 infection exposes neurons to proteins including Tat, Nef, and Vpr which can drastically alter mitochondrial properties. Mitochondrial dysfunction has been posited to be a cornerstone of the development of numerous neurodegenerative diseases. Therefore, we investigated mitochondria in an animal model of HAND. Using an HIV-1 transgenic rat model expressing seven of the nine HIV-1 viral proteins, mitochondrial functional and proteomic analysis were performed on a subset of mitochondria that are particularly sensitive to cellular changes, the neuronal synaptic mitochondria. Quantitative mass spectroscopic studies followed by statistical analysis revealed extensive proteome alteration in this model paralleling mitochondrial abnormalities identified in HIV-1 animal models and HIV-1-infected humans. Novel mitochondrial protein changes were discovered in the electron transport chain (ETC), the glycolytic pathways, mitochondrial trafficking proteins, and proteins involved in various energy pathways, and these findings correlated well with the function of the mitochondria as assessed by a mitochondrial coupling and flux assay. By targeting these proteins and proteins upstream in the same pathway, we may be able to limit the development of HAND.
Proteomics Clinical Applications | 2016
Kelly L. Stauch; Lance M. Villeneuve; Phillip R. Purnell; Brendan M. Ottemann; Katy Emanuel; Howard S. Fox
Mutations in PTEN‐induced putative kinase 1 (Pink1), a mitochondrial serine/threonine kinase, cause a recessive inherited form of Parkinsons disease (PD). Pink1 deletion in rats results in a progressive PD‐like phenotype, characterized by significant motor deficits starting at 4 months of age. Despite the evidence of mitochondrial dysfunction, the pathogenic mechanism underlying disease due to Pink1‐deficiency remains obscure.
Data in Brief | 2016
Lance M. Villeneuve; Phillip R. Purnell; Kelly L. Stauch; Howard S. Fox
Parkinson׳s disease (PD), the second most common neurodegenerative disorder, affects roughly 7–10 million people worldwide. A wide array of research has suggested that PD has a mitochondrial component and that mitochondrial dysfunction occurs well in advance of the clinical manifestation of the disease. Previous work by our lab has categorized the mitochondrial disorder associated with Parkinson׳s disease in a PINK1 knockout rat model. This model develops Parkinson׳s disease in a spontaneous, predictable manner. Our findings demonstrated PINK1-deficient rats at 4 months of age had mitochondrial proteomic and functional abnormalities before the onset of Parkinsonian symptoms (6 months) such as the movement disorder, loss of midbrain dopaminergic neurons, or the progressive degeneration present at 9 months. With this in mind, our group investigated the PINK1 knockout genetic rat model at postnatal day 10 to determine if the observed alterations at 4 months were present at an earlier time point. Using a proteomic analysis of brain mitochondria, we identified significant mitochondrial proteomic alterations in the absence of mitochondrial functional changes suggesting the observed alterations are part of the mitochondrial pathways leading to PD. Specifically, we identified differentially expressed proteins in the PINK1 knockout rat involved in glycolysis, the tricarboxylic acid cycle, and fatty acid metabolism demonstrating abnormalities occur well in advance of the manifestation of clinical symptoms. Additionally, 13 of the differentially expressed proteins have been previously identified in older PINK1 knockout animals as differentially regulated suggesting these proteins may be viable markers of the PD pathology, and further, the abnormally regulated pathways could be targeted for therapeutic interventions. All raw data can be found in Supplementary Table 1.
Data in Brief | 2015
Kelly L. Stauch; Phillip R. Purnell; Lance M. Villeneuve; Howard S. Fox
Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age-associated mitochondrial proteomic changes in the brain, we analyzed mitochondria isolated from the brain of 5-, 12-, and 24-month old mice using quantitative mass spectrometry. We identified changes in the expression of proteins important for biological processes involved in the generation of precursor metabolites and energy through the breakdown of carbohydrates, lipids, and proteins. These results are significant because we identified age-associated proteomic changes suggestive of altered mitochondrial catabolic reactions during brain aging. The proteomic data described here can be found in the PRIDE Archive using the reference number PXD001370. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism” in PROTEOMICS.
Data in Brief | 2016
Kelly L. Stauch; Lance M. Villeneuve; Phillip R. Purnell; Sanjit Pandey; Chittibabu Guda; Howard S. Fox
This article reports changes in the striatal non-synaptic mitochondrial proteome of DJ-1, Parkin, and PINK1 knockout (KO) rats at 3 months of age. DJ-1, Parkin, and PINK1 mutations cause autosomal-recessive parkinsonism. It is thought that loss of function of these proteins contributes to the onset and pathogenesis of Parkinson׳s disease (PD). As DJ-1, Parkin, and PINK1 have functions in the regulation of mitochondria, the dataset generated here highlights protein expression changes, which can be helpful for understanding pathological mitochondrial alterations. In total, 1281 proteins were quantified and 25, 37, and 15 proteins were found to exhibit differential expression due to DJ-1, Parkin, and PINK1 deficiency, respectively. All quantification can be found in the supplemental table and can be searched online at http://genome.unmc.edu/mitorat/index.html. Further, mitochondrial respiration was measured to evaluate mitochondrial function in the striatum of DJ-1, Parkin, and PINK1 KO rats, which was significantly changed only in the DJ-1 KOs.