Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip S. Coburn is active.

Publication


Featured researches published by Phillip S. Coburn.


Cellular Microbiology | 2003

The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells.

Phillip S. Coburn; Michael S. Gilmore

The enterococcal cytolysin, a two‐peptide lytic system, is a divergent relative of a large family of toxins and bacteriocins secreted by pathogenic and non‐pathogenic Gram‐positive bacteria. This family includes the lantibiotics and streptolysin S. The enterococcal cytolysin is of interest because its activities enhance enterococcal virulence in infection models and, in epidemiological studies, it has been associated with patient mortality. The cytolysin is lethal for a broad range of prokaryotic and eukaryotic cells, and this activity requires two non‐identical, post‐translationally modified peptides. The smaller of the two peptides also plays a role in a quorum‐sensing autoinduction of the cytolysin operon. As a trait that is present in particularly virulent strains of Enterococcus faecalis, including strains that are resistant to multiple antibiotics, it serves as a model for testing the value of developing new virulence‐targeting therapeutics. Further, because of the interest in small membrane active peptides as therapeutics themselves, studies of the molecular structure/activity relationships for the cytolysin peptides are providing insights into the physical basis for prokaryotic versus eukaryotic cell targeting.


Current Protein & Peptide Science | 2005

Enterococcal Cytolysin: A Novel Two Component Peptide System that Serves as a Bacterial Defense Against Eukaryotic and Prokaryotic Cells

Christopher R. Cox; Phillip S. Coburn; Michael S. Gilmore

The cytolysin is a novel, two-peptide lytic toxin produced by some strains of Enterococcus faecalis. It is toxic in animal models of enterococcal infection, and associated with acutely terminal outcome in human infection. The cytolysin exerts activity against a broad spectrum of cell types including a wide range of gram positive bacteria, eukaryotic cells such as human, bovine and horse erythrocytes, retinal cells, polymorphonuclear leukocytes, and human intestinal epithelial cells. The cytolysin likely originated as a bacteriocin involved with niche control in the complex microbial ecologies associated with eukaryotic hosts. However, additional anti-eukaryotic activities may have been selected for as enterococci adapted to eukaryotic cell predation in water or soil ecologies. Cytolytic activity requires two unique peptides that possess modifications characteristic of the lantibiotic bacteriocins, and these peptides are broadly similar in size to most cationic eukaryotic defensins. Expression of the cytolysin is tightly controlled by a novel mode of gene regulation in which the smaller peptide signals high-level expression of the cytolysin gene cluster. This complex regulation of cytolysin expression may have evolved to balance defense against eukaryotic predators with stealth.


Molecular Microbiology | 2007

Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island

Phillip S. Coburn; Arto S. Baghdayan; Gt Dolan; Nathan Shankar

Enterococcus faecalis, a leading cause of nosocomial antibiotic resistant infections, frequently possesses a 150 kb pathogenicity island (PAI) that carries virulence determinants. The presence of excisionase and integrase genes, conjugative functions and multiple insertion sequence elements suggests that the PAI, or segments thereof, might be capable of horizontal transfer. In this report, the transfer of the E. faecalis PAI is demonstrated and a mechanism for transfer elucidated. In filter matings, chloramphenicol resistance was observed to transfer from strain MMH594b, a clinical isolate possessing the PAI tagged with a cat marker, to OG1RF (pCGC) with a frequency of 3.2 × 10−10 per donor. Secondary transfer from primary transconjugant TCRFB1 to strain JH2SS in filter and broth matings occurred with a frequency of 1 and 2 × 10−1 per donor respectively. Analysis of the transconjugants demonstrated that a 27 744 bp internal PAI segment was capable of excision and circularization in the donor, and is mobilized as a cointegrate with a pTEF1‐like plasmid. High‐frequency transfer also occurred from TCRFB1 to JH2SS during transient colonization of the mouse gastrointestinal tract. This is the first demonstration of the horizontal transfer of PAI‐encoded virulence determinants in E. faecalis and has implications for genome evolution and diversity.


Journal of Bacteriology | 2009

Genetic variation and evolution of the pathogenicity island of Enterococcus faecalis.

Shonna M. McBride; Phillip S. Coburn; Arto S. Baghdayan; Rob J. L. Willems; Maria J. Grande; Nathan Shankar; Michael S. Gilmore

Enterococcus faecalis is a leading cause of nosocomial infections and is known for its ability to acquire and transfer virulence and antibiotic resistance determinants from other organisms. A 150-kb pathogenicity island (PAI) encoding several genes that contribute to pathogenesis was identified among antibiotic-resistant clinical isolates. In the current study, we examined the structure of the PAI in a collection of isolates from diverse sources in order to gain insight into its genesis and dynamics. Using multilocus sequence typing to assess relatedness at the level of strain background and microarray analysis to identify variations in the PAI, we determined the extent to which structural variations occur within the PAI and also the extent to which these variations occur independently of the chromosome. Our findings provide evidence for a modular gain of defined gene clusters by the PAI. These results support horizontal transfer as the mechanism for accretion of genes into the PAI and highlight a likely role for mobile elements in the evolution of the E. faecalis PAI.


Infection and Immunity | 2008

An AraC-Type Transcriptional Regulator Encoded on the Enterococcus faecalis Pathogenicity Island Contributes to Pathogenesis and Intracellular Macrophage Survival

Phillip S. Coburn; Arto S. Baghdayan; Gt Dolan; Nathan Shankar

ABSTRACT A gene encoding a putative AraC-type transcriptional regulator was identified on the 153-kb pathogenicity island (PAI) found among virulent Enterococcus faecalis strains. In an effort to understand the function of this regulator, designated PerA (for pathogenicity island-encoded regulator), we first examined the expression of the perA gene in the original PAI strain MMH594 and in an unrelated clinical isolate E99 by reverse transcription-PCR. Interestingly, expression analysis revealed no detectable perA transcript in MMH594, whereas a transcript was observed in strain E99. Nucleotide sequence analysis revealed that this altered expression between the two strains was attributable to the differential location of an IS1191 element within the putative promoter region upstream of the perA gene. In order to determine the role of this putative regulator in E. faecalis pathogenesis, a perA-deficient mutant was created in strain E99, and the wild-type and mutant pair were compared for phenotypic differences. In in vitro biofilm assays, the mutant strain showed a significantly higher level of growth medium-specific biofilm formation compared to the wild type. However, in a murine intraperitoneal infection model, the mutant strain was significantly less pathogenic. The mutant was also attenuated for survival within macrophages in vitro. These findings highlight the importance of PerA as a regulator of biofilm formation and survival within macrophages and is likely a regulator controlling determinants important to pathogenesis.


Plasmid | 2010

A novel conjugative plasmid from Enterococcus faecalis E99 enhances resistance to ultraviolet radiation

Phillip S. Coburn; Arto S. Baghdayan; Nikki Craig; Adam Burroughs; Preeti M. Tendolkar; Kris Miller; Fares Z. Najar; Bruce A. Roe; Nathan Shankar

Enterococcus faecalis has emerged as a prominent healthcare-associated pathogen frequently encountered in bacteremia, endocarditis, urinary tract infection, and as a leading cause of antibiotic-resistant infections. We recently demonstrated a capacity for high-level biofilm formation by a clinical E. faecalis isolate, E99. This high biofilm-forming phenotype was attributable to a novel locus, designated bee, specifying a pilus at the bacterial cell surface and localized to a large approximately 80 kb conjugative plasmid. To better understand the origin of the bee locus, as well as to potentially identify additional factors important to the biology and pathogenesis of strain E99, we sequenced the entire plasmid. The nucleotide sequence of the plasmid, designated pBEE99, revealed large regions of identity to the previously characterized conjugative plasmid pCF10. In addition to the bee locus, pBEE99 possesses an open reading frame potentially encoding aggregation substance, as well as open reading frames putatively encoding polypeptides with 60% to 99% identity at the amino acid level to proteins involved in regulation of the pheromone response and conjugal transfer of pCF10. However, strain E99 did not respond to the cCF10 pheromone in clumping assays. While pBEE99 was found to be devoid of any readily recognizable antibiotic resistance determinants, it carries two non-identical impB/mucB/samB-type genes, as well as genes potentially encoding a two-component bacteriocin similar to that encoded on pYI14. Although no bacteriocin activity was detected from an OG1RF transconjugant carrying pBEE99 against strain FA2-2, it was approximately an order of magnitude more resistant to ultraviolet radiation. Moreover, curing strain E99 of this plasmid significantly reduced its ability to survive UV exposure. Therefore, pBEE99 represents a novel conjugative plasmid that confers biofilm-forming and enhanced UV resistance traits that might potentially impact the virulence and/or fitness of E. faecalis.


Infection and Immunity | 2015

Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria

Salai Madhumathi Parkunan; C. Blake Randall; Phillip S. Coburn; Roger A. Astley; Rachel L. Staats; Michelle C. Callegan

ABSTRACT Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2−/− mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88−/− and TRIF−/− mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4−/− eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease.


PLOS ONE | 2012

Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis.

Scott M. Maddox; Phillip S. Coburn; Nathan Shankar; Tyrrell Conway

Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.


Progress in Retinal and Eye Research | 2016

Modeling intraocular bacterial infections.

Roger A. Astley; Phillip S. Coburn; Salai Madhumathi Parkunan; Michelle C. Callegan

Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease.


PLOS ONE | 2016

Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction.

Phillip S. Coburn; Brandt J. Wiskur; Frederick C. Miller; Austin L. LaGrow; Roger A. Astley; Michael H. Elliott; Michelle C. Callegan

The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE) cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB permeability is not required for the development of EBE, but toxin production may facilitate EBE pathogenesis.

Collaboration


Dive into the Phillip S. Coburn's collaboration.

Top Co-Authors

Avatar

Michelle C. Callegan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Michael S. Gilmore

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Nathan Shankar

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Arto S. Baghdayan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Roger A. Astley

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Salai Madhumathi Parkunan

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Austin L. LaGrow

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Frederick C. Miller

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Brandt J. Wiskur

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

C. Blake Randall

University of Oklahoma Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge