Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip SanMiguel is active.

Publication


Featured researches published by Phillip SanMiguel.


Nature Reviews Genetics | 2007

A unified classification system for eukaryotic transposable elements

Thomas Wicker; François Sabot; Aurélie Hua-Van; Jeffrey L. Bennetzen; Pierre Capy; Boulos Chalhoub; Andrew J. Flavell; Philippe Leroy; Michele Morgante; Olivier Panaud; Etienne Paux; Phillip SanMiguel; Alan H. Schulman

Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.


Science | 1996

Nested retrotransposons in the intergenic regions of the maize genome

Phillip SanMiguel; Alexander Tikhonov; Young Kwan Jin; Natasha Motchoulskaia; Dmitrii Zakharov; Admasu Melake-Berhan; Patricia S. Springer; Keith J. Edwards; Michael Lee; Zoya Avramova; Jeffrey L. Bennetzen

The relative organization of genes and repetitive DNAs in complex eukaryotic genomes is not well understood. Diagnostic sequencing indicated that a 280-kilobase region containing the maize Adh1-F and u22 genes is composed primarily of retrotransposons inserted within each other. Ten retroelement families were discovered, with reiteration frequencies ranging from 10 to 30,000 copies per haploid genome. These retrotransposons accounted for more than 60 percent of the Adh1-F region and at least 50 percent of the nuclear DNA of maize. These elements were largely intact and are dispersed throughout the gene-containing regions of the maize genome.


Nature Genetics | 1998

The paleontology of intergene retrotransposons of maize

Phillip SanMiguel; Brandon S. Gaut; Alexander Tikhonov; Yuko Nakajima; Jeffrey L. Bennetzen

Retrotransposons, transposable elements related to animal retroviruses, are found in all eukaryotes investigated and make up the majority of many plant genomes. Their ubiquity points to their importance, especially in their contribution to the large-scale structure of complex genomes. The nature and frequency of retro-element appearance, activation and amplification are poorly understood in all higher eukaryotes. Here we employ a novel approach to determine the insertion dates for 17 of 23 retrotransposons found near the maize adh1 gene, and two others from unlinked sites in the maize genome, by comparison of long terminal repeat (LTR) divergences with the sequence divergence between adh1 in maize and sorghum. All retrotransposons examined have inserted within the last six million years, most in the last three million years. The structure of the adh1 region appears to be standard relative to the other gene-containing regions of the maize genome, thus suggesting that retrotransposon insertions have increased the size of the maize genome from approximately 1200 Mb to 2400 Mb in the last three million years. Furthermore, the results indicate an increased mutation rate in retrotransposons compared with genes.


PLOS Genetics | 2009

Exceptional Diversity, Non-Random Distribution, and Rapid Evolution of Retroelements in the B73 Maize Genome

Regina S. Baucom; James C. Estill; Cristian Chaparro; Naadira Upshaw; Ansuya Jogi; Jean Marc Deragon; Richard Westerman; Phillip SanMiguel; Jeffrey L. Bennetzen

Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and ∼35,000 copies, respectively, or a combined ∼1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes

Katica Ilic; Phillip SanMiguel; Jeffrey L. Bennetzen

The sequences of large insert clones containing genomic DNA that is orthologous to the maize adh1 region were obtained for sorghum, rice, and the adh1-homoeologous region of maize, a remnant of the tetraploid history of the Zea lineage. By using all four genomes, it was possible to describe the nature, timing, and lineages of most of the genic rearrangements that have differentiated this chromosome segment over the last 60 million years. The rice genome has been the most stable, sharing 11 orthologous genes with sorghum and exhibiting only one tandem duplication of a gene in this region. The lineage that gave rise to sorghum and maize acquired a two-gene insertion (containing the adh locus), whereas sorghum received two additional gene insertions after its divergence from a common ancestor with maize. The two homoeologous regions of maize have been particularly unstable, with complete or partial deletion of three genes from one segment and four genes from the other segment. As a result, the region now contains only one duplicated locus compared with the eight original loci that were present in each diploid progenitor. Deletion of these maize genes did not remove both copies of any locus. This study suggests that grass genomes are generally unstable in local genome organization and gene content, but that some lineages are much more unstable than others. Maize, probably because of its polyploid origin, has exhibited extensive gene loss so that it is now approaching a diploid state.


Plant Molecular Biology | 2005

The Oryza map alignment project: The golden path to unlocking the genetic potential of wild rice species

Rod A. Wing; Jetty S. S. Ammiraju; Meizhong Luo; HyeRan Kim; Yeisoo Yu; Dave Kudrna; Jose Luis Goicoechea; Wenming Wang; Will Nelson; Kiran Rao; Darshan S. Brar; Dave J. Mackill; Bin Han; Cari Soderlund; Lincoln Stein; Phillip SanMiguel; Scott A. Jackson

The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the ‘Oryza Map Alignment Project’ (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project’s finished reference genome – O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara – thought to be the progenitor of modern cultivated rice.


Genome Biology | 2008

Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza

HyeRan Kim; Bonnie L. Hurwitz; Yeisoo Yu; Kristi Collura; Navdeep Gill; Phillip SanMiguel; James C. Mullikin; Christopher A. Maher; William Nelson; Marina Wissotski; Michele Braidotti; David Kudrna; Jose Luis Goicoechea; Lincoln Stein; Doreen Ware; Scott A. Jackson; Carol Soderlund; Rod A. Wing

We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date.


The Plant Cell | 2002

Structural Analysis of the Maize Rp1 Complex Reveals Numerous Sites and Unexpected Mechanisms of Local Rearrangement

Wusirika Ramakrishna; John Emberton; Matthew Ogden; Phillip SanMiguel; Jeffrey L. Bennetzen

Rp1 is a complex disease resistance locus in maize that is exceptional in both allelic variability and meiotic instability. Genomic sequence analysis of three maize BACs from the Rp1 region of the B73 inbred line revealed 4 Rp1 homologs and 18 other gene-homologous sequences, of which at least 16 are truncated. Thirteen of the truncated genes are found in three clusters, suggesting that they arose from multiple illegitimate break repairs at the same sites or from complex repairs of each of these sites with multiple unlinked DNA templates. A 43-kb region that contains an Rp1 homolog, six truncated genes, and three Opie retrotransposons was found to be duplicated in this region. This duplication is relatively recent, occurring after the insertion of the three Opie elements. The breakpoints of the duplication are outside of any genes or identified repeat sequence, suggesting a duplication mechanism that did not involve unequal recombination. A physical map and partial sequencing of the Rp1 complex indicate the presence of 15 Rp1 homologs in regions of ∼250 and 300 kb in the B73 inbred line. Comparison of fully sequenced Rp1-homologous sequences in the region demonstrates a history of unequal recombination and diversifying selection within the Leu-rich repeat 2 region, resulting in chimeric gene structures.


The Plant Cell | 1995

MATRIX ATTACHMENT REGIONS AND TRANSCRIBED SEQUENCES WITHIN A LONG CHROMOSOMAL CONTINUUM CONTAINING MAIZE ADH1

Zoya Avramova; Phillip SanMiguel; Elena Georgieva; Jeffrey L. Bennetzen

We provide evidence for the location of matrix attachment sites along a contiguous region of 280 kb on maize chromosome 1. We define nine potential loops that vary in length from 6 kb to > 75 kb. The distribution of the different classes of DNA within this continuum with respect to the predicted structural loops reveals an interesting correlation: the long stretches of mixed classes of highly repetitive DNAs are often segregated into topologically sequestered units, whereas low-copy-number DNAs (including the alcohol dehydrogenase1 [adh1] gene) are positioned in separate loops. Contrary to expectations, several classes of highly repeated elements with representatives in this region were found to be transcribed, and some of these exhibited tissue-specific patterns of expression.


Plant Physiology | 2002

Comparative Sequence Analysis of the Sorghum Rph Region and the Maize Rp1 Resistance Gene Complex

Wusirika Ramakrishna; John Emberton; Phillip SanMiguel; Matthew Ogden; Victor Llaca; Joachim Messing; Jeffrey L. Bennetzen

A 268-kb chromosomal segment containing sorghum (Sorghum bicolor) genes that are orthologous to the maize (Zea mays) Rp1 disease resistance (R) gene complex was sequenced. A region of approximately 27 kb in sorghum was found to contain five Rp1 homologs, but most have structures indicating that they are not functional. In contrast, maize inbred B73 has 15 Rp1 homologs in two nearby clusters of 250 and 300 kb. As at maize Rp1, the cluster of R gene homologs is interrupted by the presence of several genes that appear to have no resistance role, but these genes were different from the ones found within the maize Rp1complex. More than 200 kb of DNA downstream from the sorghumRp1-orthologous R gene cluster was sequenced and found to contain many duplicated and/or truncated genes. None of the duplications currently exist as simple tandem events, suggesting that numerous rearrangements were required to generate the current genomic structure. Four truncated genes were observed, including one gene that appears to have both 5′ and 3′ deletions. The maize Rp1region is also unusually enriched in truncated genes. Hence, the orthologous maize and sorghum regions share numerous structural features, but all involve events that occurred independently in each species. The data suggest that complex R gene clusters are unusually prone to frequent internal and adjacent chromosomal rearrangements of several types.

Collaboration


Dive into the Phillip SanMiguel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wusirika Ramakrishna

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeisoo Yu

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Dubcovsky

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge