Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip Sherman is active.

Publication


Featured researches published by Phillip Sherman.


Neuropsychopharmacology | 2004

Behavioral and Neurochemical Consequences of Long-Term Intravenous Self-Administration of MDMA and Its Enantiomers by Rhesus Monkeys

William E. Fantegrossi; William L. Woolverton; Michael R. Kilbourn; Phillip Sherman; Jie Yuan; George Hatzidimitriou; George A. Ricaurte; James H. Woods; Gail Winger

The effects of self-administered 3,4-methylenedioxymethamphetamine (MDMA) on behavior and neurochemistry have not been previously studied in laboratory primates. We investigated the capacity of MDMA and its enantiomers to maintain contingent responding over an extended duration, whether any decrements in the reinforcing effects of these compounds would be observed over time, whether such decrements would be MDMA-selective, and whether any neurochemical correlates could be identified. Animals were previously trained to self-administer cocaine, then exposed to periodic substitutions of various doses of racemic MDMA and its enantiomers; full dose–effect curves were generated for each MDMA compound repeatedly over the duration of the study. After approximately 18 months of MDMA self-administration, drug exposure was halted and after at least 2 months drug abstinence, animals were scanned using positron emission tomography (PET) with the vesicular monoamine transporter (VMAT) ligand dihydrotetrabenazine (DTBZ). Shortly thereafter, animals were euthanized, brains were dissected, and samples were assayed for brain monoamines and their metabolites using high-performance liquid chromatography (HPLC), and for VMAT using DTBZ binding. The reinforcing effects of racemic and R(−)-MDMA were reduced over a long series (months) of individual self-administration access periods; the reinforcing effects of S(+)-MDMA were more resistant to this effect, but were attenuated for one animal. The reinforcing effects of cocaine were not altered by chronic MDMA self-administration, nor was the VMAT binding potential as assessed by PET. Further, there were no measurable decrements in serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) or VMAT in any brain regions assayed. The reinforcing effects of MDMA are selectively attenuated by chronic MDMA self-administration, although this behavioral change appears to occur in the absence of any frank neurochemical correlates of toxicity.


Synapse | 1996

In vivo studies of acetylcholinesterase activity using a labeled substrate, N‐[11C]methylpiperdin‐4‐yl propionate ([11C]PMP)

Michael R. Kilbourn; Scott E. Snyder; Phillip Sherman; David E. Kuhl

Two esters, N‐[11C]methylpiperidyl acetate ([11C]AMP) and N‐[11C]methylpiperidyl propionate ([11C]PMP), were synthesized in no‐carrier‐added forms and evaluated as in vivo substrates for brain acetylcholinesterase (AChE). After peripheral injection in mice, each ester showed rapid penetration into the brain and a regional retention of radioactivity (striatum > cortex, hippocampus > cerebellum) reflecting known levels of AChE activity in the brain. Regional brain distributions after [11C]PMP administration showed better discrimination between regions of high, intermediate, and low AChE activities. Chromatographic analysis of blood and brain tissue extracts showed rapid and nearly complete hydrolysis of [11C]PMP within 10 min after injection. For both [11C]AMP and [11C]PMP, retention of radioactivity in all regions was reduced by pretreatment with diisopropylfluorophosphate (DFP), a specific irreversible AChE inhibitor. DFP treatment also significantly increased the proportions of unhydrolyzed ester in both blood and brain. Radioactivity localization in brain after peripheral injection was thus dependent on AChE‐catalyzed hydrolysis to the hydrophilic product N‐[11C]methylpiperidinol. PET imaging of [11C]AMP or [11C]PMP distributions in monkey brain showed clear accumulation of radioactivity in areas of highest AChE activity (striatum, cortex). These esters are thus in vivo substrates for brain AChE, with potential applications as in vivo imaging agents of enzyme action in the human brain. [11C]PMP, the ester with a slower rate of hydrolysis, appears to be the better candidate radiotracer for further development.


Nuclear Medicine and Biology | 1996

Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters

Michael R. Kilbourn; Kirk A. Frey; Thierry Vander Borght; Phillip Sherman

The effects of various dopaminergic drug treatments on the in vivo regional brain distribution of high-affinity radioligands ([11C]dihydrotetrabenazine and [11C]methoxytetrabenazine) for the rat brain vesicular monoamine transporter (VMAT2) were determined. Acute treatments with reserpine (2 mg/kg i.p.), tetrabenazine (10 mg/kg i.v.) or related benzoisoquinolines significantly reduced radiotracer binding in vivo. In contrast, radiotracer distributions remained unchanged after treatments with other dopaminergic drugs, whether given by single injection (haloperidol, 1 mg/kg i.p., pargyline 80 mg/kg), repeatedly (pargyline, 80 mg/kg s.c., 14 days), or by continuous infusion (deprenyl, 10 mg/kg/day, 5 days; L-DOPA methyl ester 100 mg/kg/day, 5 days). Repeated injections of tetrabenazine (5 mg/kg i.p., twice daily, 3 days) did not alter in vivo radioligand binding measured after allowing drug washout from the brain. These studies support the proposal that in vivo PET imaging of VMAT2 radioligands in patients with extrapyramidal movement disorders will not be affected by concurrent use of L-DOPA or deprenyl.


Synapse | 1998

[18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses

G. Keith Mulholland; Donald M. Wieland; Michael R. Kilbourn; Kirk A. Frey; Phillip Sherman; James E. Carey; David E. Kuhl

Loss of cholinergic transmission in the cortex and hippocampus is a characteristic feature of Alzheimers disease, and visualization of functional cholinergic synapses in the brain with PET could be a useful method for studying this degenerative condition in living humans. We investigated [18F]fluoroethoxybenzovesamicol, (−)‐[18F]FEOBV, (−)‐(2R,3R)‐trans‐2‐hydroxy‐3‐(4‐phenylpiperidino)‐5‐(2‐[18F]fluoroethoxy)‐1,2,3,4‐tetralin, a high affinity positron emitting ligand for the vesicular acetylcholine transporter, as a potential in vivo cholinergic synapse mapping agent. Rodent biodistribution, dosimetry, stereospecificity of biological effects, pharmacologic blocking studies, in vivo rodent brain autoradiography and metabolites were examined. (−)‐[18F]FEOBV brain uptake following intravenous injection was robust, with 2.65% dose/brain in mice at 5 min, and the regional localization matched the known distributions of presynaptic cholinergic markers at later times. Both the cholinergic localization and curare‐like effects of FEOBV were associated with the “(−)”‐enantiomer exclusively. (−)‐[18F]FEOBV regional brain distribution in rodents was changed little by pretreatment with haloperidol, (+)‐3‐PPP, or E‐2020, indicating FEOBV, unlike other vesamicol analogs, did not interact in vivo with dopamine or σ receptor systems. Autoradiography of rat brain 3 h following i.v. injection of (−)‐[18F]FEOBV showed high localization in brain areas rich in presynaptic cholinergic elements. Metabolic defluorination in rodents was modest, and analysis of brain tissue following tracer administration found FEOBV as the only extractable radioactive species. (−)‐[18F]FEOBV dosimetry calculated from rat data estimate 10 mCi doses can be given to humans. These studies show FEOBV maps cholinergic areas with high specificity in vivo, and may provide a noninvasive means to safely and accurately gauge the functional integrity of cholinergic synapses in man using PET. Synapse 30:263–274, 1998.


ACS Nano | 2011

125I-Labeled Gold Nanorods for Targeted Imaging of Inflammation

Xia Shao; Huanan Zhang; Justin R. Rajian; David L. Chamberland; Phillip Sherman; Carole A. Quesada; Alisa E. Koch; Nicholas A. Kotov; Xueding Wang

For better examination of inflammation, we designed inflammation-targeted nuclear and optical dual-modality contrast agents prepared by I-125 radiolabeling of gold nanorods (GdNRs) conjugated with anti-intercellular adhesion molecule 1 (ICAM-1) antibody. The bioactivity and specific binding of the PEGylated (125)I-ICAM-GdNR conjugates to the ICAM-1 was validated through ELISA testing. Inflammation-targeted imaging was then conducted on an adjuvant-induced arthritic rat model which demonstrated an elevation of ICAM-1 level in the affected ankle joints. Facilitated by the I-125 radioisotope and the whole-body imaging via the Gamma camera, the time-dependent distribution of the systemically injected agent as well as the uptake of the agent in the inflammatory articular tissues could be examined conveniently and quantitatively. The success in targeted delivery of gold nanoparticles to inflammatory tissue enables both nuclear and optical imaging of inflammation at molecular or cellular level. Other than diagnosis, radiolabeled gold nanoparticles also hold promise for targeted therapy of a variety of disorders.


Nuclear Medicine and Biology | 2009

Positron emission tomography imaging of (2R,3R)-5-[18F]fluoroethoxybenzovesamicol in rat and monkey brain: a radioligand for the vesicular acetylcholine transporter

Michael R. Kilbourn; Brian G. Hockley; Lihsueh Lee; Phillip Sherman; Carole A. Quesada; Kirk A. Frey; Robert A. Koeppe

INTRODUCTION The regional brain distribution of (2R,3R)-5-[(18)F]fluoroethoxy-benzovesamicol ((-)-[(18)F]FEOBV), a radioligand for the vesicular acetylcholine transporter (VAChT), was examined in vivo in mice, rats and rhesus monkeys. METHODS Regional brain distributions of (-)-[(18)F]FEOBV in mice were determined using ex vivo dissection. MicroPET imaging was used to determine the regional brain pharmacokinetics of the radioligand in rat and rhesus monkey brains. RESULTS In all three species, clear heterogeneous regional brain distributions were obtained, with the rank order of brain tissues (striatum>thalamus>cortex>cerebellum) consistent with the distribution of cholinergic nerve terminals containing the VAChT. CONCLUSIONS (-)-[(18)F]FEOBV remains a viable candidate for further development as an in vivo imaging agent for positron emission tomography (PET) studies of the VAChT in the human brain.


Journal of Cerebral Blood Flow and Metabolism | 2001

Radiolabeled Cholinesterase Substrates: In Vitro Methods for Determining Structure-Activity Relationships and Identification of a Positron Emission Tomography Radiopharmaceutical for In Vivo Measurement of Butyrylcholinesterase Activity

Scott E. Snyder; Neeraja Gunupudi; Phillip Sherman; Elizabeth R. Butch; Marc B. Skaddan; Michael R. Kilbourn; Robert A. Koeppe; David E. Kuhl

There is currently great interest in developing radiolabeled substrates for acetylcholinesterase and butyrylcholinesterase that would be useful in the in vivo imaging of patients with Alzheimers disease. Using a simple in vitro spectrophotometric assay for determination of enzymatic cleavage rates, the structure-activity relationship for a short series of 1-methyl-4-piperidinyl esters was investigated. Relative enzymatic hydrolysis rates for the well-characterized 1-methyl-4-piperidinyl acetate, propionate, and i-butyrate esters were in agreement with literature values. The 4 and 5 carbon esters of 1-methyl-4-piperidinol were specific for butyrylcholinesterase and cleaved in the rank order n-valerate > n-butyrate >> 2-methylbutyrate, iso-valerate. These spectrophotometric results were also in agreement with in vitro hydrolysis rates in mouse blood and with in vivo regional retention of radioactivity in mouse brain of 11C-labeled analogs. Brain uptake and apparent enzymatic rate constants for 1-[11C]methyl-4-piperidinyl n-butyrate and n-valerate were calculated from in vivo measurements in M. nemistrina using positron emission tomography. Based on higher brain uptake of radioactivity and superior pharmacokinetics, 1-[11C]methyl-4-piperidinyl n-butyrate was identified as a new radiopharmaceutical for the in vivo measurement of butyrylcholinesterase activity.


ACS Medicinal Chemistry Letters | 2012

Evaluation of [11C]N-Methyl Lansoprazole as a Radiopharmaceutical for PET Imaging of Tau Neurofibrillary Tangles

Xia Shao; Garrett M. Carpenter; Timothy J. Desmond; Phillip Sherman; Carole A. Quesada; Maria V. Fawaz; Allen F. Brooks; Michael R. Kilbourn; Roger L. Albin; Kirk A. Frey; Peter Scott

[(11)C]N-Methyl lansoprazole ([(11)C]NML, 3) was synthesized and evaluated as a radiopharmaceutical for quantifying tau neurofibrillary tangle (NFT) burden using positron emission tomography (PET) imaging. [(11)C]NML was synthesized from commercially available lansoprazole in 4.6% radiochemical yield (noncorrected RCY, based upon [(11)C]MeI), 99% radiochemical purity, and 16095 Ci/mmol specific activity (n = 5). Log P was determined to be 2.18. A lack of brain uptake in rodent microPET imaging revealed [(11)C]NML to be a substrate for the rodent permeability-glycoprotein 1 (PGP) transporter, but this could be overcome by pretreating with cyclosporin A to block the PGP. Contrastingly, [(11)C]NML was not found to be a substrate for the primate PGP, and microPET imaging in rhesus revealed [(11)C]NML uptake in the healthy primate brain of ∼1600 nCi/cc maximum at 3 min followed by rapid egress to 500 nCi/cc. Comparative autoradiography between wild-type rats and transgenic rats expressing human tau (hTau +/+) revealed 12% higher uptake of [(11)C]NML in the cortex of brains expressing human tau. Further autoradiography with tau positive brain samples from progressive supranuclear palsy (PSP) patients revealed colocalization of [(11)C]NML with tau NFTs identified using modified Bielschowsky staining. Finally, saturation binding experiments with heparin-induced tau confirmed K d and Bmax values of [(11)C]NML as 700 pM and 0.214 fmol/μg, respectively.


Nuclear Medicine and Biology | 1995

Synthesis, in vivo biodistribution and dosimetry of [11C]N-Methylpiperidyl benzilate ([11C]NMPB), a muscarinic acetylcholine receptor antagonist

G. Keith Mulholland; Michael R. Kilbourn; Phillip Sherman; James E. Carey; Kirk A. Frey; Robert A. Koeppe; David E. Kuhl

4-N-Methylpiperidyl benzilate (NMPB), a high affinity antagonist for the muscarinic cholinergic receptor, has been synthesized in carbon-11-labeled form through the N-[11C]methylation of 4-piperidylbenzilate. The product was isolated by HPLC, and obtained in yields (> 100 mCi) and specific activities (500-3000 Ci/mmol) sufficient for in vivo evaluation in small animals. Time-dependent regional brain distributions in rats and mice showed high radiotracer uptake and retention in striatum and cortex, and low in cerebellum, consistent with muscarinic cholinergic receptor distributions. Radiotracer retention in tissues could be significantly reduced by pretreatment of animals with a large dose of a competing antagonist, quiniclidinyl benzilate. Whole body biodistribution in rats was used to calculate the expected human internal radiation dosimetry for this new radiopharmaceutical. These animal experiments formed the basis for subsequent introduction of [11C]NMPB into human use with positron emission tomography.


Synapse | 1998

REDUCED MPTP NEUROTOXICITY IN STRIATUM OF THE MUTANT MOUSE TOTTERING

Michael R. Kilbourn; Phillip Sherman; Louise C. Abbott

The effects of MPTP treatment (4 × 10 mg/kg, 2‐h intervals) on in vivo striatal binding of (+)‐α‐[3H]dihydrotetrabenazine ((+)‐[3H]DTBZ) to the vesicular monoamine transporter type 2 (VMAT2) were examined in wild type (+,+) and tottering (tg/tg) mice of the C57BL/6J strain. The tottering mutant has been previously characterized as having hyperinnervation of noradrenergic terminals in the brain, with increased concentrations of norepinephrine and increased numbers of VMAT2 binding sites. In wild‐type mice, MPTP caused a significant decrease in specific striatal (+)‐[3H]DTBZ binding in both males (‐71%) and females (‐57%), consistent with dopaminergic terminal losses. In the tottering mice, the neurotoxic effects of MPTP were diminished, with smaller losses of (+)‐[3H]DTBZ binding observed both in males (‐45%) and females (‐26%). These results are consistent with the hypothesis that vesicular storage (as a result of hyperinnervation) offers neuroprotection toward MPTP toxicity, although the confounding effects of increases in norepinephrine concentrations or changes in calcium ion channel function (both also characteristics of the tottering mutant) cannot be ruled out. The tottering mutant does, however, offer another animal model to examine the biochemical features responsible for MPTP toxicity. Synapse 30:205–210, 1998.

Collaboration


Dive into the Phillip Sherman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xia Shao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Peter Scott

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge