Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phineas T. Hamilton is active.

Publication


Featured researches published by Phineas T. Hamilton.


PLOS Pathogens | 2013

Host defense via symbiosis in Drosophila.

Phineas T. Hamilton; Steve J. Perlman

Host-associated microbes have often been studied as pathogens and the causes of disease, but symbiotic microbes that benefit their hosts are now known to be ubiquitous. In particular, insects possess a diversity of bacteria that can defend against natural enemies—Anopheles mosquitoes, for example, were recently shown to host a gut bacterium that confers refractoriness to malaria parasites [1]. In Drosophila, a key model of infection and immunity, fascinating examples of defense are accumulating, and two lineages of bacteria that infect the genus are now known to be defensive: Wolbachia and Spiroplasma (Figure 1). Both are vertically transmitted, both are facultative in Drosophila in that they are not strictly required by the host, and both infect Drosophila melanogaster. Here, we summarize what is known of Drosophila as an intriguing and emerging model of defensive symbiosis. Drosophila is an incredibly diverse genus with thousands of species, many of which are infected by Wolbachia and Spiroplasma [2]. As maternally transmitted symbionts, Wolbachia and Spiroplasma came to attention in Drosophila through their ability to manipulate host reproduction to favor their own transmission. Wolbachia are notorious for doing this by inducing cytoplasmic incompatibility (CI), whereby matings between Wolbachia-infected males and uninfected females result in the production of few to no offspring [3], providing selective pressure to maintain and rapidly spread Wolbachia in host populations. Though Spiroplasma are not known to induce CI, both Spiroplasma and Wolbachia can selfishly distort host sex ratios through male-killing in Drosophila, selectively killing the male offspring of infected females [3,4]. Many strains of Wolbachia and Spiroplasma, though, do not have such manipulative tendencies, and it has largely been a mystery how they are maintained in host populations. The discovery that they can defend against enemies has gone a long way in explaining their persistence, and has begun to shift our perception of many facultative inherited symbionts from that of manipulative parasites toward helpful mutualists.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A ribosome-inactivating protein in a Drosophila defensive symbiont

Phineas T. Hamilton; Fangni Peng; Martin J. Boulanger; Steve J. Perlman

Significance Symbioses between animals and microbes are now recognized as critical to many aspects of host health. This is especially true in insects, which are associated with diverse maternally transmitted endosymbionts that can protect against parasites and pathogens. Here, we find that Spiroplasma—a defensive endosymbiont that protects Drosophila during parasitism by a virulent and common nematode—encodes a protein toxin, a ribosome-inactivating protein (RIP) related to bacterial virulence factors such as the Shiga-like toxins in Escherichia coli. We further find that nematode ribosomal RNA suffers depurination consistent with attack by a RIP when the host is protected by Spiroplasma, suggesting a mechanism through which symbiotic microbes may protect their hosts from disease. Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D. neotestacea, although the molecular basis for this protection has been unresolved. Here, we show that Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea. First, we show that recombinant Spiroplasma RIP catalyzes depurination of 28S rRNAs in a cell-free assay, as well as Howardula rRNA in vitro at the canonical RIP target site within the α-sarcin/ricin loop (SRL) of 28S rRNA. We then show that Howardula parasites in Spiroplasma-infected flies show a strong signal of rRNA depurination consistent with RIP-dependent modification and large decreases in the proportion of 28S rRNA intact at the α-sarcin/ricin loop. Notably, host 28S rRNA is largely unaffected, suggesting targeted specificity. Collectively, our study identifies a novel RIP in an insect defensive symbiont and suggests an underlying RIP-dependent mechanism in Spiroplasma-mediated defense.


Molecular Ecology | 2014

Transcriptional responses in a Drosophila defensive symbiosis

Phineas T. Hamilton; Jong S. Leong; Ben F. Koop; Steve J. Perlman

Inherited symbionts are ubiquitous in insects and can have important consequences for the fitness of their hosts. Many inherited symbionts defend their hosts against parasites or other natural enemies; however, the means by which most symbionts confer protection is virtually unknown. We examine the mechanisms of defence in a recently discovered case of symbiont‐mediated protection, where the bacterial symbiont Spiroplasma defends the fly Drosophila neotestacea from a virulent nematode parasite, Howardula aoronymphium. Using quantitative PCR of Spiroplasma infection intensities and whole transcriptome sequencing, we attempt to distinguish between the following modes of defence: symbiont–parasite competition, host immune priming and the production of toxic factors by Spiroplasma. Our findings do not support a model of exploitative competition between Howardula and Spiroplasma to mediate defence, nor do we find strong support for host immune priming during Spiroplasma infection. Interestingly, we recovered sequence for putative toxins encoded by Spiroplasma, including a novel putative ribosome‐inactivating protein, transcripts of which are up‐regulated in response to nematode exposure. Protection via the production of toxins may be a widely used and important mechanism in heritable defensive symbioses in insects.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Maternal transmission, sex ratio distortion, and mitochondria

Steve J. Perlman; Christina N. Hodson; Phineas T. Hamilton; G. P. Opit; Brent E. Gowen

In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods. We also discuss the consequences of linkage between mitochondria and other maternally transmitted genetic elements, including the role of cytonuclear incompatibilities in maintaining polymorphism. Finally, as a case study, we discuss a recently discovered maternally transmitted sex ratio distortion in an insect that is associated with extraordinarily divergent mitochondria.


Evolution | 2013

INFECTIOUS ADAPTATION: POTENTIAL HOST RANGE OF A DEFENSIVE ENDOSYMBIONT IN DROSOPHILA

Tamara S. Haselkorn; Sarah N. Cockburn; Phineas T. Hamilton; Steve J. Perlman; John Jaenike

Maternally transmitted symbionts persist over macroevolutionary timescales by undergoing occasional lateral transfer to new host species. To invade a new species, a symbiont must survive and reproduce in the new host, undergo maternal transmission, and confer a selective benefit sufficient to overcome losses due to imperfect maternal transmission. Drosophila neotestacea is naturally infected with a strain of Spiroplasma that restores fertility to nematode‐parasitized females, which are otherwise sterilized by parasitism. We experimentally transferred Spiroplasma from D. neotestacea to four other species of mycophagous Drosophila that vary in their ability to resist and/or tolerate nematode parasitism. In all four species, Spiroplasma achieved within‐host densities and experienced rates of maternal transmission similar to that in D. neotestacea. Spiroplasma restored fertility to nematode‐parasitized females in one of these novel host species. Based on estimates of maternal transmission fidelity and the expected benefit of Spiroplasma infection in the wild, we conclude that Spiroplasma has the potential to spread and become abundant within Drosophila putrida, which is broadly sympatric with D. neotestacea and in which females are rendered completely sterile by nematode parasitism. Thus, a major adaptation within D. putrida could arise via lateral transmission of a heritable symbiont from D. neotestacea.


Mbio | 2015

Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association

Phineas T. Hamilton; Jan Votýpka; Anna Dostálová; Vyacheslav Yurchenko; Nathan H. Bird; Julius Lukeš; Bruno Lemaitre; Steve J. Perlman

ABSTRACT Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila—Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. drosophilae has a broad host range, readily infecting a number of Drosophila species, including D. melanogaster, with oral infection of D. melanogaster larvae resulting in the induction of numerous immune genes. When injected into adult hemolymph, J. drosophilae kills D. melanogaster, although interestingly, neither the Imd nor the Toll pathway is induced and Imd mutants do not show increased susceptibility to infection. In contrast, mutants deficient in drosocrystallin, a major component of the peritrophic matrix, are more severely infected during oral infection, suggesting that the peritrophic matrix plays an important role in mediating trypanosomatid infection in Drosophila. This work demonstrates that the J. drosophilae-Drosophila system can be a powerful model to uncover the effects of trypanosomatids in their insect hosts. IMPORTANCE Trypanosomatid parasites are ubiquitous in insects and are significant causes of disease when vectored to humans by blood-feeding insects. In recent decades, Drosophila has emerged as the predominant insect model of infection and immunity and is also known to be infected by trypanosomatids at high rates in the wild. Despite this, there has been almost no work on their trypanosomatid parasites, in part because Drosophila-specific trypanosomatids have been resistant to culturing. Here, we present the first isolation and detailed characterization of a trypanosomatid from Drosophila, finding that it represents a new genus and species, Jaenimonas drosophilae. Using this parasite, we conducted a series of experiments that revealed many of the unknown aspects of trypanosomatid infection in Drosophila, including host range, transmission biology, dynamics of infection, and host immune response. Taken together, this work establishes J. drosophilae as a powerful new opportunity to study trypanosomatid infections in insects. Trypanosomatid parasites are ubiquitous in insects and are significant causes of disease when vectored to humans by blood-feeding insects. In recent decades, Drosophila has emerged as the predominant insect model of infection and immunity and is also known to be infected by trypanosomatids at high rates in the wild. Despite this, there has been almost no work on their trypanosomatid parasites, in part because Drosophila-specific trypanosomatids have been resistant to culturing. Here, we present the first isolation and detailed characterization of a trypanosomatid from Drosophila, finding that it represents a new genus and species, Jaenimonas drosophilae. Using this parasite, we conducted a series of experiments that revealed many of the unknown aspects of trypanosomatid infection in Drosophila, including host range, transmission biology, dynamics of infection, and host immune response. Taken together, this work establishes J. drosophilae as a powerful new opportunity to study trypanosomatid infections in insects.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA–RON2 pair

Michelle L. Parker; Diana M. Penarete-Vargas; Phineas T. Hamilton; Amandine Guérin; J. P. Dubey; Steve J. Perlman; Furio Spano; Maryse Lebrun; Martin J. Boulanger

Significance Parasites of phylum Apicomplexa cause significant morbidity and mortality on a global scale. Central to the pathogenesis of these parasites is their ability to invade host cells through a junction formed by members of the apical membrane antigen (AMA) and rhoptry neck protein 2 (RON2) families localized to the parasite surface and host outer membrane, respectively. Here we structurally and functionally characterize Toxoplasma gondii AMA4 (TgAMA4), a highly divergent AMA protein. Structural analyses of TgAMA4 in the apo and RON2L1 bound forms reveal a previously underappreciated level of molecular diversity at the parasite–host-cell interface that offers important insight into stage-dependent invasion strategies and yields a more comprehensive model of apicomplexan invasion. Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2L1. High-resolution crystal structures of TgAMA4 in the apo and TgRON2L1-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA–RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite–host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA–RON2 pairs and apicomplexan invasive stages.


Ecology and Evolution | 2012

Higher temperature variability increases the impact of Batrachochytrium dendrobatidis and shifts interspecific interactions in tadpole mesocosms

Phineas T. Hamilton; Jean M. L. Richardson; Purnima Govindarajulu; Bradley R. Anholt

The emergence of amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd) has led to the decline and extinction of numerous amphibian species. Multiple studies have observed links between climatic factors and amphibian declines apparently caused by Bd. Using outdoor experimental mesocosms, we tested the response of red-legged frog (Rana aurora) tadpoles to increased variation in temperature, a component of climate linked to amphibian declines, and Bd exposure. We included tadpoles of a sympatric competitor species, Pacific chorus frog (Pseudacris regilla), in a fully factorial design to test the effects of Bd and temperature on interspecific interactions. We found that higher variation in temperature had numerous effects in mesocosms, including interacting with Bd presence to decrease the condition of R. aurora, shifting the relative performance of competing P. regilla and R. aurora, and accelerating the development of P. regilla relative to R. aurora. Our results demonstrate that increased variation in temperature can affect amphibians in multiple ways that will be contingent on ecological context, including the presence of Bd and competing species.


BMC Evolutionary Biology | 2016

Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila

Mark Hanson; Phineas T. Hamilton; Steve J. Perlman

BackgroundDrosophila is an important model for studying the evolution of animal immunity, due to the powerful genetic tools developed for D. melanogaster. However, Drosophila is an incredibly speciose lineage with a wide range of ecologies, natural histories, and diverse natural enemies. Surprisingly little functional work has been done on immune systems of species other than D. melanogaster. In this study, we examine the evolution of immune genes in the speciose subgenus Drosophila, which diverged from the subgenus Sophophora (that includes D. melanogaster) approximately 25–40 Mya. We focus on D. neotestacea, a woodland species used to study interactions between insects and parasitic nematodes, and combine recent transcriptomic data with infection experiments to elucidate aspects of host immunity.ResultsWe found that the vast majority of genes involved in the D. melanogaster immune response are conserved in D. neotestacea, with a few interesting exceptions, particularly in antimicrobial peptides (AMPs); until recently, AMPs were not thought to evolve rapidly in Drosophila. Unexpectedly, we found a distinct diptericin in subgenus Drosophila flies that appears to have evolved under diversifying (positive) selection. We also describe the presence of the AMP drosocin, which was previously thought to be restricted to the subgenus Sophophora, in the subgenus Drosophila. We challenged two subgenus Drosophila species, D. neotestacea and D. virilis with bacterial and fungal pathogens and quantified AMP expression.ConclusionsWhile diptericin in D. virilis was induced by exposure to gram-negative bacteria, it was not induced in D. neotestacea, showing that conservation of immune genes does not necessarily imply conservation of the realized immune response. Our study lends support to the idea that invertebrate AMPs evolve rapidly, and that Drosophila harbor a diverse repertoire of AMPs with potentially important functional consequences.


Genetics | 2017

Paternal Genome Elimination in Liposcelis Booklice (Insecta: Psocodea)

Christina N. Hodson; Phineas T. Hamilton; David Dilworth; Chris J. Nelson; Caitlin Curtis; Steve J. Perlman

How sex is determined in insects is diverse and dynamic, and includes male heterogamety, female heterogamety, and haplodiploidy. In many insect lineages, sex determination is either completely unknown or poorly studied. We studied sex determination in Psocodea—a species-rich order of insects that includes parasitic lice, barklice, and booklice. We focus on a recently discovered species of Liposcelis booklice (Psocodea: Troctomorpha), which are among the closest free-living relatives of parasitic lice. Using genetic, genomic, and immunohistochemical approaches, we show that this group exhibits paternal genome elimination (PGE), an unusual mode of sex determination that involves genomic imprinting. Controlled crosses, following a genetic marker over multiple generations, demonstrated that males only transmit to offspring genes they inherited from their mother. Immunofluorescence microscopy revealed densely packed chromocenters associated with H3K9me3—a conserved marker for heterochromatin—in males, but not in females, suggesting silencing of chromosomes in males. Genome assembly and comparison of read coverage in male and female libraries showed no evidence for differentiated sex chromosomes. We also found that females produce more sons early in life, consistent with facultative sex allocation. It is likely that PGE is widespread in Psocodea, including human lice. This order represents a promising model for studying this enigmatic mode of sex determination.

Collaboration


Dive into the Phineas T. Hamilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Jaenike

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben F. Koop

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge