Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phineus R. L. Markwick is active.

Publication


Featured researches published by Phineus R. L. Markwick.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain

Mark Wells; Henning Tidow; Trevor J. Rutherford; Phineus R. L. Markwick; Malene Ringkjøbing Jensen; Efstratios Mylonas; Dmitri I. Svergun; Martin Blackledge; Alan R. Fersht

Proteins with intrinsically disordered domains are implicated in a vast range of biological processes, especially in cell signaling and regulation. Having solved the quaternary structure of the folded domains in the tumor suppressor p53 by a multidisciplinary approach, we have now determined the average ensemble structure of the intrinsically disordered N-terminal transactivation domain (TAD) by using residual dipolar couplings (RDCs) from NMR spectroscopy and small-angle x-ray scattering (SAXS). Remarkably, not only were we able to measure RDCs of the isolated TAD, but we were also able to do so for the TAD in both the full-length tetrameric p53 protein and in its complex with a specific DNA response element. We determined the orientation of the TAD ensemble relative to the core domain, found that the TAD was stiffer in the proline-rich region (residues 64–92), which has a tendency to adopt a polyproline II (PPII) structure, and projected the TAD away from the core. We located the TAD in SAXS experiments on a complex between tetrameric p53 and four Taz2 domains that bind tightly to the TAD (residues 1–57) and acted as “reporters.” The p53-Taz2 complex was an extended cross-shaped structure. The quality of the SAXS data enabled us to model the disordered termini and the folded domains in the complex with DNA. The core domains enveloped the response element in the center of the molecule, with the Taz2-bound TADs projecting outward from the core.


Structure | 2009

Quantitative Determination of the Conformational Properties of Partially Folded and Intrinsically Disordered Proteins Using NMR Dipolar Couplings

Malene Ringkjøbing Jensen; Phineus R. L. Markwick; Sebastian Meier; Christian Griesinger; Markus Zweckstetter; Stephan Grzesiek; Pau Bernadó; Martin Blackledge

Intrinsically disordered proteins (IDPs) inhabit a conformational landscape that is too complex to be described by classical structural biology, posing an entirely new set of questions concerning the molecular understanding of functional biology. The characterization of the conformational properties of IDPs, and the elucidation of the role they play in molecular function, is therefore one of the major challenges remaining for modern structural biology. NMR is the technique of choice for studying this class of proteins, providing information about structure, flexibility, and interactions at atomic resolution even in completely disordered states. In particular, residual dipolar couplings (RDCs) have been shown to be uniquely sensitive and powerful tools for characterizing local and long-range structural behavior in disordered proteins. In this review we describe recent applications of RDCs to quantitatively describe the level of local structure and transient long-range order in IDPs involved in viral replication, neurodegenerative disease, and cancer.


Nature | 2014

Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

Chi Nguyen; Robert W. Haushalter; D. John Lee; Phineus R. L. Markwick; Joel Bruegger; Grace Caldara-Festin; Kara Finzel; David R. Jackson; Fumihiro Ishikawa; Bing O’Dowd; J. Andrew McCammon; Stanley J. Opella; Shiou-Chuan Tsai; Michael D. Burkart

Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities

Paul M. Gasper; Brian Fuglestad; Elizabeth A. Komives; Phineus R. L. Markwick; McCammon Ja

The serine protease α-thrombin is a dual-action protein that mediates the blood-clotting cascade. Thrombin alone is a procoagulant, cleaving fibrinogen to make the fibrin clot, but the thrombin–thrombomodulin (TM) complex initiates the anticoagulant pathway by cleaving protein C. A TM fragment consisting of only the fifth and sixth EGF-like domains (TM56) is sufficient to bind thrombin, but the presence of the fourth EGF-like domain (TM456) is critical to induce the anticoagulant activity of thrombin. Crystallography of the thrombin–TM456 complex revealed no significant structural changes in thrombin, suggesting that TM4 may only provide a scaffold for optimal alignment of protein C for its cleavage by thrombin. However, a variety of experimental data have suggested that the presence of TM4 may affect the dynamic properties of the active site loops. In the present work, we have used both conventional and accelerated molecular dynamics simulation to study the structural dynamic properties of thrombin, thrombin:TM56, and thrombin:TM456 across a broad range of time scales. Two distinct yet interrelated allosteric pathways are identified that mediate both the pro- and anticoagulant activities of thrombin. One allosteric pathway, which is present in both thrombin:TM56 and thrombin:TM456, directly links the TM5 domain to the thrombin active site. The other allosteric pathway, which is only present on slow time scales in the presence of the TM4 domain, involves an extended network of correlated motions linking the TM4 and TM5 domains and the active site loops of thrombin.


PLOS Computational Biology | 2011

Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics.

Denis Bucher; Barry J. Grant; Phineus R. L. Markwick; J. Andrew McCammon

Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins.


Angewandte Chemie | 2009

Protein Conformational Flexibility from Structure-Free Analysis of NMR Dipolar Couplings: Quantitative and Absolute Determination of Backbone Motion in Ubiquitin†

Loïc Salmon; Guillaume Bouvignies; Phineus R. L. Markwick; Nils Lakomek; Scott A. Showalter; Da-Wei Li; Korvin F. A. Walter; Christian Griesinger; Rafael Brüschweiler; Martin Blackledge

A robust procedure for the determination of protein-backbone motions on time scales of pico- to milliseconds directly from residual dipolar couplings has been developed that requires no additional scaling relative to external references. The results for ubiquitin (blue in graph: experimental N-HN order parameters) correspond closely to the amplitude, nature, and distribution of motion found in a 400 ns molecular-dynamics trajectory of ubiquitin (red).


Journal of the American Chemical Society | 2010

Enhanced Conformational Space Sampling Improves the Prediction of Chemical Shifts in Proteins

Phineus R. L. Markwick; Carla F. Cervantes; Barrett L. Abel; Elizabeth A. Komives; Martin Blackledge; J. Andrew McCammon

A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate 1HN, 15N, 13Cα, 13Cβ, and 13C′ chemical shifts of the ankyrin repeat protein IκBα (residues 67−206), the primary inhibitor of nuclear factor κ-B (NF-κB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the 15N, 13Cα, and 13Cβ nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range.


PLOS Computational Biology | 2008

Structural Biology by NMR: Structure, Dynamics, and Interactions

Phineus R. L. Markwick; Thérèse E. Malliavin; Michael Nilges

The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.


PLOS Computational Biology | 2012

Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

Vladimir Vacic; Phineus R. L. Markwick; Christopher J. Oldfield; Xiaoyue Zhao; Chad Haynes; Vladimir N. Uversky; Lilia M. Iakoucheva

The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations.


Journal of Chemical Physics | 2007

Ultrafast repair of irradiated DNA: Nonadiabatic ab initio simulations of the guanine-cytosine photocycle

Phineus R. L. Markwick; Nikos L. Doltsinis

Nonadiabatic first-principles molecular dynamics simulations have been performed of the photoexcited Watson-Crick guanine-cytosine (GC) DNA base pair in the gas phase and in aqueous solution. An excited state coupled proton-electron transfer (CPET) from G to C along the central hydrogen bond is observed upon excitation of the pipi* state initially localized on G. In the resulting charge transfer state a conical intersection between the excited state and the ground state is easily accessible. Therefore radiationless decay is fast, of the order of 100 fs, followed by a rapid CPET back reaction retrieving the initial Watson-Crick structure. A detailed analysis of the mechanism of nonradiative decay suggests a biexponential behavior in which out-of-plane motion plays a special role for the longer decay component.

Collaboration


Dive into the Phineus R. L. Markwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Blackledge

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loïc Salmon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malene Ringkjøbing Jensen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Gasper

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge