Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phoebe A. Phillips is active.

Publication


Featured researches published by Phoebe A. Phillips.


Pancreas | 2004

Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells.

Minoti V. Apte; Susanna Park; Phoebe A. Phillips; N. Santucci; David Goldstein; Rakesh K. Kumar; Grant A. Ramm; M.W. Büchler; Helmut Friess; Joshua A. McCarroll; Keogh G; Neil D. Merrett; R C Pirola; Jeremy S. Wilson

Objectives: Pancreatic cancer has a very poor prognosis, largely due to its propensity for early local and distant spread. Histopathologically, most pancreatic cancers are characterized by a prominent stromal/fibrous reaction in and around tumor tissue. The aims of this study were to determine whether (1) the cells responsible for the formation of the stromal reaction in human pancreatic cancers are activated pancreatic stellate cells (PSCs) and (2) an interaction exists between pancreatic cancer cells and PSCs that may facilitate local and distant invasion of tumor. Methods: Serial sections of human pancreatic cancer tissue were stained for desmin and glial fibrillary acidic protein (stellate cell selective markers) and &agr;-smooth muscle actin (&agr;SMA), a marker of activated PSC activation, by immunohistochemistry, and for collagen using Sirius Red. Correlation between the extent of positive staining for collagen and &agr;SMA was assessed by morphometry. The cellular source of collagen in stromal areas was identified using dual staining methodology, ie, immunostaining for &agr;SMA and in situ hybridization for procollagen &agr;1I mRNA. The possible interaction between pancreatic cancer cells and PSCs was assessed in vitro by exposing cultured rat PSCs to control medium or conditioned medium from 2 pancreatic cancer cell lines (PANC-1 and MiaPaCa-2) for 24 hours. PSC activation was assessed by cell proliferation and &agr;SMA expression. Results: Stromal areas of human pancreatic cancer stained strongly positive for the stellate cell selective markers desmin and GFAP (indicating the presence of PSCs), for &agr;SMA (suggesting that the PSCs were in their activated state) and for collagen. Morphometric analysis demonstrated a close correlation (r = 0.77; P < 0.04; 8 paired sections) between the extent of PSC activation and collagen deposition. Procollagen mRNA expression was localized to &agr;SMA-positive cells in stromal areas indicating that activated PSCs were the predominant source of collagen in stromal areas. Exposure of PSCs to pancreatic cancer cell secretions in vitro resulted in PSC activation as indicated by significantly increased cell proliferation and &agr;SMA expression. Conclusions: Activated PSCs are present in the stromal reaction in pancreatic cancers and are responsible for the production of stromal collagen. PSC function is influenced by pancreatic cancer cells. Interactions between tumor cells and stromal cells (PSCs) may play an important role in the pathobiology of pancreatic cancer.


Cancer Research | 2008

Pancreatic stellate cells: partners in crime with pancreatic cancer cells.

Alain Vonlaufen; Swapna Joshi; Changfa Qu; Phoebe A. Phillips; Zhihong Xu; Nicole R. Parker; Cheryl Toi; Romano C. Pirola; Jeremy S. Wilson; David Goldstein; Minoti V. Apte

Pancreatic stellate cells (PSC) produce the stromal reaction in pancreatic cancer, but their role in cancer progression is not fully elucidated. We examined the influence of PSCs on pancreatic cancer growth using (a) an orthotopic model of pancreatic cancer and (b) cultured human PSCs (hPSC) and human pancreatic cancer cell lines MiaPaCa-2 and Panc-1. Athymic mice received an intrapancreatic injection of saline, hPSCs, MiaPaCa-2 cells, or hPSCs + MiaPaCa-2. After 7 weeks, tumor size, metastases, and tumor histology were assessed. In vitro studies assessed the effect of cancer cell secretions on PSC migration and the effect of hPSC secretions on cancer cell proliferation, apoptosis, and migration. Possible mediators of the effects of hPSC secretions on cancer cell proliferation were examined using neutralizing antibodies. Compared with mice receiving MiaPaCa-2 cells alone, mice injected with hPSCs + MiaPaCa-2 exhibited (a) increased tumor size and regional and distant metastasis, (b) fibrotic bands (desmoplasia) containing activated PSCs within tumors, and (c) increased tumor cell numbers. In vitro studies showed that, in the presence of pancreatic cancer cells, PSC migration was significantly increased. Furthermore, hPSC secretions induced the proliferation and migration, but inhibited the apoptosis, of MiaPaCa-2 and Panc-1 cells. The proliferative effect of hPSC secretions on pancreatic cancer cells was inhibited in the presence of neutralizing antibody to platelet-derived growth factor. Our studies indicate a significant interaction between pancreatic cancer cells and stromal cells (PSCs) and imply that pancreatic cancer cells recruit stromal cells to establish an environment that promotes cancer progression.


Gut | 2002

Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis

P Mews; Phoebe A. Phillips; Roger G. Fahmy; Mark A. Korsten; R C Pirola; Jeremy S. Wilson; Minoti V. Apte

Background: It is now generally accepted that chronic pancreatic injury and fibrosis may result from repeated episodes of acute pancreatic necroinflammation (the necrosis-fibrosis sequence). Recent studies suggest that pancreatic stellate cells (PSCs), when activated, may play an important role in the development of pancreatic fibrosis. Factors that may influence PSC activation during pancreatic necroinflammation include cytokines known to be important in the pathogenesis of acute pancreatitis, such as tumour necrosis factor α (TNF-α), and the interleukins 1, 6, and 10 (IL-1, IL-6, and IL-10). Aim: To determine the effects of these cytokines on PSC activation, as assessed by cell proliferation, α smooth muscle actin (α-SMA) expression, and collagen synthesis. Methods: Cultured rat PSCs were incubated with cytokines for 24 hours. Cell proliferation was assessed by measuring 3H thymidine incorporation into cellular DNA, α-SMA expression by western blotting, and collagen synthesis by incorporation of 14C proline into collagenase sensitive protein. mRNA levels for procollagen α1(1) in PSCs were determined by northern and dot blotting methods. Results: Expression of α-SMA by PSCs was increased on exposure to each of the cytokines used in the study. Stellate cell proliferation was stimulated by TNF-α but inhibited by IL-6, while IL-1 and IL-10 had no effect on PSC proliferation. Collagen synthesis by PSCs was stimulated by TNF-α and IL-10, inhibited in response to IL-6, and unaltered by IL-1. Changes in collagen protein synthesis in response to TNF-α, IL-10, and IL-6 were not regulated at the mRNA level in the cells. Conclusion: This study has demonstrated that PSCs have the capacity to respond to cytokines known to be upregulated during acute pancreatitis. Persistent activation of PSCs by cytokines during acute pancreatitis may be a factor involved in the progression from acute pancreatitis to chronic pancreatic injury and fibrosis.


Gut | 2012

StellaTUM: current consensus and discussion on pancreatic stellate cell research

Mert Erkan; Guido Adler; Minoti V. Apte; Max G. Bachem; Malte Buchholz; Sönke Detlefsen; Irene Esposito; Helmut Friess; Thomas M. Gress; Hans Joerg Habisch; Rosa F. Hwang; Robert Jaster; Jörg Kleeff; Günter Klöppel; Claus Kordes; Craig D. Logsdon; Atsushi Masamune; Christoph W. Michalski; Junseo Oh; Phoebe A. Phillips; Massimo Pinzani; Carolin Reiser-Erkan; Hidekazu Tsukamoto; Jeremy S. Wilson

The field of pancreatic stellate cell (PSC) biology is very young, as the essential in-vitro tools to study these cells (ie, methods to isolate and culture PSC) were only developed as recently as in 1998. Nonetheless, there has been an exponential increase in research output in this field over the past decade, with numerous research groups around the world focusing their energies into elucidating the biology and function of these cells. It is now well established that PSC are responsible for producing the stromal reaction (fibrosis) of two major diseases of the pancreas—chronic pancreatitis and pancreatic cancer. Despite exponentially increasing data, the methods for studying PSC remain variable. Although within individual laboratories methods are consistent, different methodologies used by various research groups make it difficult to compare results and conclusions. This article is not a review article on the functions of PSC. Instead, members of the Pancreatic Star Alliance (http://www.pancreaticstaralliance.com) discuss here and consolidate current knowledge, to outline and delineate areas of consensus or otherwise (eg, with regard to methodological approaches) and, more importantly, to identify essential directions for future research. Hepatic stellate cells (HSC) were first described by Karl von Kupffer in 1876; however, similar cells in the pancreas were first observed in the 1980s.1–3 In 1998, Apte et al 4 and Bachem et al 5 isolated and cultured PSC.4 5 In the normal pancreas, PSC are located in close proximity to the basal aspect of pancreatic acinar cells. In sections immunostained for the marker desmin (a cytoskeletal protein), quiescent PSC can be seen as cells with a central cell body and long cytoplasmic projections extending along the base of adjacent acinar cells similar to that of pericytes in the mammary gland. …


Gastroenterology | 2000

Does alcohol directly stimulate pancreatic fibrogenesis? Studies with rat pancreatic stellate cells

Minoti V. Apte; Phoebe A. Phillips; Roger G. Fahmy; Samantha J. Darby; Sally C. Rodgers; Geoffrey W. McCaughan; Mark A. Korsten; Romano C. Pirola; Daya Naidoo; Jeremy S. Wilson

BACKGROUND & AIMS Activated pancreatic stellate cells have recently been implicated in pancreatic fibrogenesis. This study examined the role of pancreatic stellate cells in alcoholic pancreatic fibrosis by determining whether these cells are activated by ethanol itself and, if so, whether such activation is caused by the metabolism of ethanol to acetaldehyde and/or the generation of oxidant stress within the cells. METHODS Cultured rat pancreatic stellate cells were incubated with ethanol or acetaldehyde. Activation was assessed by cell proliferation, alpha-smooth muscle actin expression, and collagen synthesis. Alcohol dehydrogenase (ADH) activity in stellate cells and the influence of the ADH inhibitor 4-methylpyrazole (4MP) on the response of these cells to ethanol was assessed. Malondialdehyde levels were determined as an indicator of lipid peroxidation. The effect of the antioxidant vitamin E on the response of stellate cells to ethanol or acetaldehyde was also examined. RESULTS Exposure to ethanol or acetaldehyde led to cell activation and intracellular lipid peroxidation. These changes were prevented by the antioxidant vitamin E. Stellate cells exhibited ethanol-inducible ADH activity. Inhibition of ADH by 4MP prevented ethanol-induced cell activation. CONCLUSIONS Pancreatic stellate cells are activated on exposure to ethanol. This effect of ethanol is most likely mediated by its metabolism (via ADH) to acetaldehyde and the generation of oxidant stress within the cells.


Cancer Research | 2007

Triptolide Induces Pancreatic Cancer Cell Death via Inhibition of Heat Shock Protein 70

Phoebe A. Phillips; Vikas Dudeja; Joshua A. McCarroll; Daniel Borja-Cacho; Rajinder Dawra; William E. Grizzle; Selwyn M. Vickers; Ashok K. Saluja

Pancreatic cancer is highly resistant to current chemotherapy agents. We therefore examined the effects of triptolide (a diterpenoid triepoxide) on pancreatic cancer growth and local-regional tumor spread using an orthotopic model of pancreatic cancer. We have recently shown that an increased level of HSP70 in pancreatic cancer cells confers resistance to apoptosis and that inhibiting HSP70 induces apoptosis in these cells. In addition, triptolide was recently identified as part of a small molecule screen, as a regulator of the human heat shock response. Therefore, our aims were to examine the effects of triptolide on (a) pancreatic cancer cells by assessing viability and apoptosis, (b) pancreatic cancer growth and local invasion in vivo, and (c) HSP70 levels in pancreatic cancer cells. Incubation of PANC-1 and MiaPaCa-2 cells with triptolide (50-200 nmol/L) significantly reduced cell viability, but had no effect on the viability of normal pancreatic ductal cells. Triptolide induced apoptosis (assessed by Annexin V, caspase-3, and terminal nucleotidyl transferase-mediated nick end labeling) and decreased HSP70 mRNA and protein levels in both cell lines. Triptolide (0.2 mg/kg/d for 60 days) administered in vivo decreased pancreatic cancer growth and significantly decreased local-regional tumor spread. The control group of mice had extensive local invasion into adjacent organs, including the spleen, liver, kidney, and small intestine. Triptolide causes pancreatic cancer cell death in vitro and in vivo by induction of apoptosis and its mechanism of action is mediated via the inhibition of HSP70. Triptolide is a potential therapeutic agent that can be used to prevent the progression and metastases of pancreatic cancer.


Gut | 2003

Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover

Phoebe A. Phillips; Joshua A. McCarroll; Sandra Park; Ming J. Wu; R C Pirola; Mark A. Korsten; Jeremy S. Wilson; Minoti V. Apte

Background: Pancreatic fibrosis is a characteristic feature of chronic pancreatic injury and is thought to result from a change in the balance between synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies suggest that activated pancreatic stellate cells (PSCs) play a central role in pancreatic fibrogenesis via increased synthesis of ECM proteins. However, the role of these cells in ECM protein degradation has not been fully elucidated. Aims: To determine: (i) whether PSCs secrete matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) and, if so (ii) whether MMP and TIMP secretion by PSCs is altered in response to known PSC activating factors such as tumour necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin 6 (IL-6), ethanol, and acetaldehyde. Methods: Cultured rat PSCs (n=3–5 separate cell preparations) were incubated at 37°C for 24 hours with serum free culture medium containing TNF-α (5–25 U/ml), TGF-β1 (0.5–1 ng/ml), IL-6 (0.001–10 ng/ml), ethanol (10–50 mM), or acetaldehyde (150–200 μM), or no additions (controls). Medium from control cells was examined for the presence of MMPs by zymography using a 10% polyacrylamide-0.1% gelatin gel. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine gene expression of MMP9 and the tissue inhibitors of metalloproteinases TIMP1 and TIMP2. Western blotting was used to identify a specific MMP, MMP2 (a gelatinase that digests basement membrane collagen and the dominant MMP observed on zymography) and a specific TIMP, TIMP2. Reverse zymography was used to examine functional TIMPs in PSC secretions. The effect of TNF-α, TGF-β1, and IL-6 on MMP2 secretion was assessed by densitometry of western blots. The effect of ethanol and acetaldehyde on MMP2 and TIMP2 secretion was also assessed by this method. Results: Zymography revealed that PSCs secrete a number of MMPs including proteinases with molecular weights consistent with MMP2, MMP9, and MMP13. RT-PCR demonstrated the presence of mRNA for metalloproteinase inhibitors TIMP1 and TIMP2 in PSCs while reverse zymography revealed the presence of functional TIMP2 in PSC secretions. MMP2 secretion by PSCs was significantly increased by TGF-β1 and IL-6, but was not affected by TNF-α. Ethanol and acetaldehyde induced secretion of both MMP2 and TIMP2 by PSCs. Conclusions: Pancreatic stellate cells have the capacity to synthesise a number of matrix metalloproteinases, including MMP2, MMP9, and MMP13 and their inhibitors TIMP1 and TIMP2. MMP2 secretion by PSCs is significantly increased on exposure to the proinflammatory cytokines TGF-β1 and IL-6. Both ethanol and its metabolite acetaldehyde increase MMP2 as well as TIMP2 secretion by PSCs. Implication: The role of pancreatic stellate cells in extracellular matrix formation and fibrogenesis may be related to their capacity to regulate the degradation as well as the synthesis of extracellular matrix proteins.


Cancer Research | 2007

Heat Shock Protein 70 Increases Tumorigenicity and Inhibits Apoptosis in Pancreatic Adenocarcinoma

Ali Aghdassi; Phoebe A. Phillips; Vikas Dudeja; D. Dhaulakhandi; R. Sharif; Rajinder Dawra; Markus M. Lerch; Ashok K. Saluja

Pancreatic carcinoma is a malignant disease that responds poorly to chemotherapy because of its resistance to apoptosis. Heat shock proteins (Hsp) are not only cytoprotective but also interfere with the apoptotic cascade. Here, we investigated the role of Hsp70 in regulating apoptosis in pancreatic cancer cells. Hsp70 expression was increased in pancreatic cancer cells compared with normal pancreatic ductal cells. This was confirmed by increased mRNA levels for Hsp70 in human pancreatic cancer tissue compared with neighboring normal tissue from the same patient. Depletion of Hsp70 by quercetin decreased cell viability and induced apoptosis in cancer cells but not in normal pancreatic ductal cells. To show that this is a specific effect of Hsp70 on apoptosis, levels of Hsp70 were knocked down by short interfering RNA treatment, which also induced apoptosis in cancer cells as indicated by Annexin V staining and caspase activation. Daily administration of quercetin to nude mice decreased tumor size as well as Hsp70 levels in tumor tissue. These findings indicate that Hsp70 plays an important role in apoptosis and that selective Hsp70 knockdown can be used to induce apoptosis in pancreatic cancer cells.


American Journal of Pathology | 2010

Role of Pancreatic Stellate Cells in Pancreatic Cancer Metastasis

Zhihong Xu; Alain Vonlaufen; Phoebe A. Phillips; Eva Fiala-Beer; Xuguo Zhang; Lu Yang; Andrew V. Biankin; David Goldstein; Romano C. Pirola; Jeremy S. Wilson; Minoti V. Apte

Pancreatic stellate cells (PSCs) produce the stromal reaction in pancreatic cancer (PC), and their interaction with cancer cells facilitates cancer progression. This study investigated the role of human PSCs (hPSCs) in the metastatic process and tumor angiogenesis using both in vivo (orthotopic model) and in vitro (cultured PSC and PC cells) approaches. A sex mismatch study (injection of male hPSCs plus female PC cells into the pancreas of female mice) was conducted to determine whether hPSCs accompany cancer cells to metastatic sites. Metastatic nodules were examined by fluorescent in situ hybridization for the presence of the Y chromosome. Angiogenesis was assessed by i) immunostaining tumors for CD31, an endothelial cell marker; and ii) quantifying human microvascular endothelial cell (HMEC-1) tube formation in vitro on exposure to conditioned media from hPSCs. Transendothelial migration was assessed in vitro by examining the movement of fluorescently labeled hPSCs through an endothelial cell monolayer. Human PSCs i) were found in multiple metastatic sites in each mouse injected with male hPSCs plus female PC cells; ii) increased CD31 expression in primary tumors from mice injected with MiaPaCa-2 and hPSCs and stimulated tube formation by HMEC-1 in vitro; and iii) exhibited transendothelial migration that was stimulated by cancer cells. Human PSCs accompany cancer cells to metastatic sites, stimulate angiogenesis, and are able to intravasate/extravasate to and from blood vessels.


Cancer Research | 2008

Pancreatic Stellate Cells and Pancreatic Cancer Cells: An Unholy Alliance

Alain Vonlaufen; Phoebe A. Phillips; Zhihong Xu; David B. Goldstein; Romano C. Pirola; Jeremy S. Wilson; Minoti V. Apte

Pancreatic cancer--a tumor displaying a particularly abundant stromal reaction--is notorious for its poor prognosis. Recent studies, via newly developed orthotopic models, provide compelling evidence of an important role for pancreatic stellate cells (PSC) in pancreatic cancer progression. Characterization of the mechanisms mediating PSC-cancer interactions will lead to the development of much needed alternative therapeutic approaches to improve disease outcome.

Collaboration


Dive into the Phoebe A. Phillips's collaboration.

Top Co-Authors

Avatar

Minoti V. Apte

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Wilson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Joshua A. McCarroll

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Goldstein

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alain Vonlaufen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Romano C. Pirola

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge