Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phoebe Lin is active.

Publication


Featured researches published by Phoebe Lin.


PLOS ONE | 2014

HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats

Phoebe Lin; Mary Bach; Mark Asquith; Aaron Y. Lee; Lakshmi Akileswaran; Patrick Stauffer; Sean Davin; Yuzhen Pan; Eric D. Cambronne; Martha L. Dorris; Justine W. Debelius; Christian L. Lauber; Gail Ackermann; Yoshiki Vazquez Baeza; Tejpal Gill; Rob Knight; Robert A. Colbert; Joel D. Taurog; Russell N. Van Gelder; James T. Rosenbaum

The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.


Retina-the Journal of Retinal and Vitreous Diseases | 2013

Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device

Paul Hahn; Justin Migacz; Rachelle OʼConnell; Shelley Day; Annie Lee; Phoebe Lin; Robin R. Vann; Anthony N. Kuo; Sharon Fekrat; Prithvi Mruthyunjaya; Eric A. Postel; Joseph A. Izatt; Cynthia A. Toth

Purpose: The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Methods: Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board–approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Results: Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with ≥80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients. Conclusion: This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.


JAMA Ophthalmology | 2016

Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy

Thomas S. Hwang; Miao Zhang; Kavita V. Bhavsar; Xinbo Zhang; J. Peter Campbell; Phoebe Lin; Steven T. Bailey; Christina J. Flaxel; Andreas K. Lauer; David J. Wilson; David Huang; Yali Jia

Importance Projection artifacts in optical coherence tomography angiography (OCTA) blur the retinal vascular plexuses together and limit visualization of the individual plexuses. Objective To describe projection-resolved (PR) OCTA in eyes with diabetic retinopathy (DR) and healthy eyes. Design, Setting, and Participants In this case-control study, patients with DR and healthy controls were enrolled in this observational study from January 26, 2015, to December 4, 2015, at a tertiary academic center. Spectral-domain, 70-kHz OCT obtained 3 × 3-mm macular scans. The PR algorithm suppressed projection artifacts. A semiautomated segmentation algorithm divided PR-OCTA into superficial, intermediate, and deep retinal plexuses. Two masked graders examined 3-layer PR-OCTA and combined angiograms for nonperfusion and abnormal capillaries. Main Outcomes and Measures Retinal nonperfusion and capillary abnormalities and the diagnostic accuracy of detecting DR. Results Twenty-nine eyes of 15 healthy individuals (mean [SD] age, 36.2 [13.4] years; 11 women) and 47 eyes of 29 patients with DR (mean [SD] age, 55.5 [11.9]; 10 women) underwent imaging. PR-OCTA revealed 3 distinct retinal plexuses in their known anatomical locations in all eyes. The intermediate and deep plexuses of healthy eyes revealed capillary networks of uniform density and caliber, whereas the superficial plexus revealed vessels in the familiar centripetal branching pattern. In eyes with DR, 3-layer PR-OCTA disclosed incongruent areas of nonperfusion and varied vessel caliber and density in the deeper plexuses. Masked grading of capillary nonperfusion on 3-layer PR-OCTA detected DR with 100% sensitivity (95% CI, 90.8%-100%) and 100% specificity (95% CI, 85.4%-100%). With unsegmented retinal angiograms, the sensitivity and specificity were 78.7% (95% CI, 63.9%-88.8%) and 100% (95% CI, 85.4%-100%), respectively (P = .002 for sensitivity). On 3-layer PR-OCTA, sensitivity was 72.2% (95% CI, 54.6%-85.2%) for severe nonproliferative DR and proliferative DR eyes with generalized nonperfusion in 2 or more individual plexuses, but on combined angiogram, sensitivity was 25.0% (95% CI, 12.7%-42.5%) for generalized nonperfusion (P < .001). PR-OCTA disclosed dilated vessels in the intermediate and deep plexuses in 23 eyes (100%) with proliferative DR, 13 eyes (100%) with severe nonproliferative DR, 8 eyes (73%) with mild to moderate nonproliferative DR, and 0 control eyes. Conclusions and Relevance By presenting 3 retinal vascular plexuses distinctly, PR-OCTA reveals capillary abnormalities in deeper layers with clarity and may distinguish DR from healthy eyes and severe DR from mild DR with greater accuracy compared with conventional OCTA.


Best Practice & Research: Clinical Rheumatology | 2014

The role of the gut and microbes in the pathogenesis of spondyloarthritis

Mark Asquith; Dirk Elewaut; Phoebe Lin; James T. Rosenbaum

The intestinal microbiota is firmly implicated not only in the pathogenesis of inflammatory bowel disease (IBD) but increasingly also in the development of inflammation at extraintestinal tissue sites. Significant clinical, genetic, immunological, and microbiological overlap exists between IBD and spondyloarthritis (SpA), which indicates that pathophysiological mechanisms are shared between these diseases and may center on the intestinal microbiota. Recently, culture-independent techniques have enabled the microbiota in health and disease to be described in increasing detail. Moreover, functional studies have identified myriad host effector and regulatory pathways that shape or are shaped by this microbial community. We consider the complex relationship between SpA pathogenesis and gut microbes, with a discussion of how manipulation of the gut microbiota itself may be a promising future target for SpA therapy.


Investigative Ophthalmology & Visual Science | 2016

Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis.

Yukiko K Nakamura; Christina Metea; Lisa Karstens; Mark Asquith; Henry Gruner; Cathleen Moscibrocki; Iris Lee; Colin J. Brislawn; Janet K. Jansson; James T. Rosenbaum; Phoebe Lin

Purpose To investigate the contribution of the gut microbiota to the pathogenesis of uveitis. Methods Experimental autoimmune uveitis (EAU) in B10.RIII mice was induced using interphotoreceptor binding protein peptide. Mice were treated with oral or intraperitoneal (IP) antibiotics. Effector (Teff) and regulatory (Treg) T lymphocytes were identified using flow cytometry; 16S rRNA gene sequencing and qPCR were performed on gastrointestinal (GI) contents. Results Broad-spectrum (four antibiotics given simultaneously) oral, but not IP, antibiotics reduced mean uveitis clinical scores significantly compared with water-treated animals (0.5 vs. 3.0, P < 0.0001 for oral; 3.4 vs. 3.4, P > 0.99 for IP). Both oral metronidazole (P = 0.02) and vancomycin (P < 0.0001) alone decreased inflammation, whereas neomycin (P = 0.7) and ampicillin (P = 0.4) did not change mean uveitis scores. Oral broad-spectrum antibiotics increased Tregs in the GI lamina propria of EAU animals at 1 week, and in extraintestinal lymphoid tissues later, whereas Teff and inflammatory cytokines were reduced. 16S sequencing of GI contents revealed altered microbiota in immunized mice compared with nonimmunized mice, and microbial diversity clustering in EAU mice treated with uveitis-protective antibiotics. Experimental autoimmune uveitis mice also demonstrated gut microbial diversity clustering associated with clinical score severity. Conclusions Oral antibiotics modulate the severity of inducible EAU by increasing Tregs in the gut and extraintestinal tissues, as well as decreasing effector T cells and cytokines. 16S sequencing suggests that there may be protective and, conversely, potentially uveitogenic, gut microbiota. These findings may lead to a better understanding of how uveitis can be treated or prevented by modulating the gut microbiome.


Arthritis & Rheumatism | 2016

Perturbed Mucosal Immunity and Dysbiosis Accompany Clinical Disease in a Rat Model of Spondyloarthritis.

Mark Asquith; Patrick Stauffer; Sean Davin; Claire Mitchell; Phoebe Lin; James T. Rosenbaum

The HLA–B27/β2‐microglobulin (β2m)–transgenic (Tg) rat is a leading model of B27‐associated spondyloarthritis (SpA), and the disease is dependent on the presence of intestinal bacteria. Previous studies have shown that adult HLA–B27/β2m–Tg rats have an altered intestinal microbiota. This study sought to better define the age‐dependent changes to both mucosal immune function and dysbiosis in this rat model of SpA.


Investigative Ophthalmology & Visual Science | 2012

Image Inversion Spectral-Domain Optical Coherence Tomography Optimizes Choroidal Thickness and Detail through Improved Contrast

Phoebe Lin; Priyatham S. Mettu; Dustin L. Pomerleau; Stephanie J. Chiu; Ramiro S. Maldonado; Sandra S. Stinnett; Cynthia A. Toth; Sina Farsiu; Prithvi Mruthyunjaya

PURPOSE This study was conducted to determine whether there were significant differences in choroidal thickness, contrast, outer choroidal vessel (OCV), and choroidal-scleral junction (CSJ) visualization in inverted versus upright spectral-domain optical coherence tomography (SD-OCT). METHODS Images were captured on Bioptigen SD-OCT, Zeiss Cirrus HD-OCT, and Heidelberg Spectralis in 42 eyes of 21 healthy subjects. Average choroidal thickness across a fovea-centered 4-mm segment was determined with MATLAB. Quantitative measures of choroidal contrast were measured and CSJ assessed by applying a score of 0 to 3. OCV was determined by counting choroidal vessels ≥ 200 μm. RESULTS Mean choroidal thickness was greater in inverted versus upright images captured by Bioptigen (P ≤ 0.003) and Spectralis (P ≤ 0.015). Choroidal thickness varied significantly between the three machines (P < 0.05). Contrast was higher in inverted versus upright images captured by Bioptigen (P ≤ 0.02) and Spectralis (P < 0.001), but not in Cirrus (P > 0.10, both observers). CSJ score was highest in the following: Spectralis inverted = Spectralis EDI > Cirrus upright > Bioptigen inverted. Mean OCV was highest in Spectralis inverted mode. CONCLUSION The most favorable modes to visualize CSJ and OCV are the Spectralis EDI, Spectralis inverted, Cirrus upright, and Bioptigen inverted. These modes demonstrate the highest outer choroidal contrast and choroidal thickness measurements. Choroidal thickness cannot be compared between machines due to conversion factor differences. Future studies and construction of automated segmentation and detection software should take these benefits and pitfalls into account.


Clinical Ophthalmology | 2015

Targeting interleukin-6 for noninfectious uveitis

Phoebe Lin

Interleukin-6 (IL-6) is a pleiotropic cytokine implicated in the pathogenesis of many immune-mediated disorders including several types of non-infectious uveitis. These uveitic conditions include Vogt-Koyanagi-Harada syndrome, uveitis associated with Behçet disease, and sarcoidosis. This review summarizes the role of IL-6 in immunity, highlighting its effect on Th17, Th1, and plasmablast differentiation. It reviews the downstream mediators activated in the process of IL-6 binding to its receptor complex. This review also summarizes the biologics targeting either IL-6 or the IL-6 receptor, including tocilizumab, sarilumab, sirukumab, olokizumab, clazakizumab, and siltuximab. The target, dosage, potential side effects, and potential uses of these biologics are summarized in this article based on the existing literature. In summary, anti-IL-6 therapy for non-infectious uveitis shows promise in terms of efficacy and side effect profile.


Investigative Ophthalmology & Visual Science | 2015

Aqueous cell differentiation in anterior uveitis using fourier-domain optical coherence tomography

Jennifer Rose-Nussbaumer; Yan Li; Phoebe Lin; Eric B. Suhler; Mark Asquith; James T. Rosenbaum; David Huang

PURPOSE The differential diagnosis of a patient presenting with anterior uveitis is broad and can present a diagnostic challenge. In this study, we evaluate the characteristic findings of inflammatory cells on optical coherence tomography (OCT) both in vitro and in vivo. METHODS Blood from two healthy volunteers was prepared using standardized methods for cell sorting with a flow cytometer (FASCAria). Neutrophils, lymphocytes, monocytes, and red blood cells were placed in suspension and scanned with a 26-kHz Fourier-domain OCT system (RTVue) with 5-μm axial resolution. Custom software algorithms were used to identify cells based on their reflectance distribution. These algorithms were then applied to OCT images obtained from uveitis patients with active anterior chamber inflammation. RESULTS On OCT images the cells appeared as hyperreflective spots. In vitro, cell reflectance was statistically significantly different between all of the cell types (neutrophils, monocytes, lymphocytes, and red blood cells, P < 0.001, Mann-Whitney test). In vivo, the relationship between underlying disease and cell type imaged on OCT was highly statistically significant, with human leukocyte antigen (HLA)-B27-associated uveitis patients having a predominantly polymorphonuclear pattern on OCT and sarcoidosis and inflammatory bowel disease patients having a predominantly mononuclear pattern on OCT (P < 0.001, Fishers exact test). CONCLUSIONS These in vitro and in vivo data demonstrate the potential of OCT to evaluate cells in the anterior chamber of patients noninvasively. Optical coherence tomography may be a useful adjunct to guide the diagnosis and treatment of ocular inflammatory conditions.


Arthritis & Rheumatism | 2017

Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthropathy

Mark Asquith; Sean Davin; Patrick Stauffer; Claire Michell; Cathleen Janowitz; Phoebe Lin; Joe Ensign-Lewis; Jason M. Kinchen; Dennis R. Koop; James T. Rosenbaum

HLA–B27–associated spondyloarthritides are associated with an altered intestinal microbiota and bowel inflammation. We undertook this study to identify HLA–B27–dependent changes in both host and microbial metabolites in the HLA–B27/β2‐microglobulin (β2m)–transgenic rat and to determine whether microbiota‐derived metabolites could impact disease in this major model of spondyloarthritis.

Collaboration


Dive into the Phoebe Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge