Phoevos Koukouvinis
City University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phoevos Koukouvinis.
Physics of Fluids | 2016
Phoevos Koukouvinis; Manolis Gavaises; Outi Supponen; Mohamed Farhat
The present paper focuses on the simulation of the expansion and aspherical collapse of a laser-generated bubble subjected to an acceleration field and comparison of the results with instances from high-speed videos. The interaction of the liquid and gas is handled with the volume of fluid method. Compressibility effects have been included for each phase to predict the propagation of pressure waves. Initial conditions were estimated through the Rayleigh Plesset equation, based on the maximum bubble size and collapse time. The simulation predictions indicate that during the expansion the bubble shape is very close to spherical. On the other hand, during the collapse the bubble point closest to the bottom of the container develops a slightly higher collapse velocity than the rest of the bubble surface. Over time, this causes momentum focusing and leads to a positive feedback mechanism that amplifies the collapse locally. At the latest collapse stages, a jet is formed at the axis of symmetry, with opposite direction to the acceleration vector, reaching velocities of even 300 m/s. The simulation results agree with the observed bubble evolution and pattern from the experiments, obtained using high speed imaging, showing the collapse mechanism in great detail and clarity.
Physics of Fluids | 2016
Phoevos Koukouvinis; Manolis Gavaises; Outi Supponen; Mohamed Farhat
The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.
International Journal of Engine Research | 2017
Phoevos Koukouvinis; Homa Naseri; Manolis Gavaises
The aim of this article is to assess the impact of turbulence and cavitation models on the prediction of diesel injector nozzle flow. Two nozzles are examined, an enlarged one, operating at incipient cavitation, and an industrial injector tip, operating at developed cavitation. The turbulence model employed includes the re-normalization group k–ε, realizable k–ε and k–ω shear stress transport Reynolds-averaged Navier–Stokes models; linear pressure–strain Reynolds stress model and the wall adapting local eddy viscosity large eddy simulation model. The results indicate that all Reynolds-averaged Navier–Stokes and the Reynolds stress turbulence models have failed to predict cavitation inception due to their limitation to resolve adequately the low pressure existing inside vortex cores, which is responsible for cavitation development in this particular flow configuration. Moreover, Reynolds-averaged Navier–Stokes models failed to predict unsteady cavitation phenomena in the industrial injector. However, the wall adapting local eddy viscosity large eddy simulation model was able to predict incipient and developed cavitation, while also capturing the shear layer instability, vortex shedding and cavitating vortex formation. Furthermore, the performance of two cavitation methodologies is discussed within the large eddy simulation framework. In particular, a barotropic model and a mixture model based on the asymptotic Rayleigh–Plesset equation of bubble dynamics have been tested. The results indicate that although the solved equations and phase change formulation are different in these models, the predicted cavitation and flow field were very similar at incipient cavitation conditions. At developed cavitation conditions, standard cavitation models may predict unrealistically high liquid tension, so modifications may be essential. It is also concluded that accurate turbulence representation is crucial for cavitation in nozzle flows.
Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering | 2012
John S. Anagnostopoulos; Phoevos Koukouvinis; Fotis Stamatelos; Dimitris E. Papantonis
This work presents the development and application of a new optimal design methodology for Turgo impulse hydro turbines. The numerical modelling of the complex, unsteady, free surface flow evolved during the jet-runner interaction is carried out by a new Lagrangian particle method, which tracks a number of representative flow elements and accounts for the various hydraulic losses and pressure effects through special adjustable terms introduced in the particle motion equations. In this way, the simulation of a full periodic interval of the flow field in the runner is completed in negligible computer time compared to the corresponding needs of modern CFD software. Consequently, the numerical design optimization of runner geometry becomes feasible even in a personal computer and affordable by small and local manufacturers. The bucket shape of a 70 kW Turgo model is properly parameterized and numerically optimized using a stochastic optimization software to maximize the hydraulic efficiency of the runner. The optimal runner and the rest turbine parts are then manufactured and installed in the Lab for testing. Detailed performance measurements are conducted and the results show satisfactory agreement with the numerical predictions, thus validating the reliability and effectiveness of the new methodology.Copyright
Journal of Physics: Conference Series | 2015
Phoevos Koukouvinis; Manolis Gavaises
This paper aims to compare the results of two commonly used methods for the simulation of cavitating flows; one is the two phase mass transfer approach and the other is a homogenous equilibrium model. Both methodologies are compared in a shock tube and a throttle flow, which resembles the constrictions in Diesel injector passages. The mass transfer rate in the two phase model plays the fundamental role in affecting how close to equilibrium the model is; by increasing the mass transfer the two phase model comes close to the homogenous equilibrium model.
Journal of Hydrodynamics | 2015
Phoevos Koukouvinis; G. Bergeles; Manolis Gavaises
The paper proposes a methodology within the Reynolds averaged Navier Stokes (RANS) solvers for cavitating flows capable of predicting the flow regions of bubble collapse and the potential aggressiveness to material damage. An aggressiveness index is introduced, called cavitation aggressiveness index (CAI) based on the total derivative of pressure which identifies surface areas exposed to bubble collapses, the index is tested in two known cases documented in the open literature and seems to identify regions of potential cavitation damage.
International Journal of Computational Fluid Dynamics | 2016
Phoevos Koukouvinis; Manolis Gavaises; Anastasios Georgoulas; Marco Marengo
ABSTRACT This paper discusses the implementation of an explicit density-based solver, that utilises the central-upwind schemes for the simulation of cavitating bubble dynamic flows. It is highlighted that, in conjunction with the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) scheme they are of second order in spatial accuracy; essentially they are high-order extensions of the Lax–Friedrichs method and are linked to the Harten Lax and van Leer (HLL) solver family. Basic comparison with the predicted wave pattern of the central-upwind schemes is performed with the exact solution of the Riemann problem, for an equation of state used in cavitating flows, showing excellent agreement. Next, the solver is used to predict a fundamental bubble dynamics case, the Rayleigh collapse, in which results are in accordance to theory. Then several different bubble configurations were tested. The methodology is able to handle the large pressure and density ratios appearing in cavitating flows, giving similar predictions in the evolution of the bubble shape, as the reference.
Scientific Reports | 2018
Homa Naseri; Kieran Trickett; Nicholas Mitroglou; I.K. Karathanassis; Phoevos Koukouvinis; Manolis Gavaises; Robert H. Barbour; Dale Diamond; Sarah E. Rogers; Maurizio Santini; Jin Wang
We identify the physical mechanism through which newly developed quaternary ammonium salt (QAS) deposit control additives (DCAs) affect the rheological properties of cavitating turbulent flows, resulting in an increase in the volumetric efficiency of clean injectors fuelled with diesel or biodiesel fuels. Quaternary ammonium surfactants with appropriate counterions can be very effective in reducing the turbulent drag in aqueous solutions, however, less is known about the effect of such surfactants in oil-based solvents or in cavitating flow conditions. Small-angle neutron scattering (SANS) investigations show that in traditional DCA fuel compositions only reverse spherical micelles form, whereas reverse cylindrical micelles are detected by blending the fuel with the QAS additive. Moreover, experiments utilising X-ray micro computed tomography (micro-CT) in nozzle replicas, quantify that in cavitation regions the liquid fraction is increased in the presence of the QAS additive. Furthermore, high-flux X-ray phase contrast imaging (XPCI) measurements identify a flow stabilization effect in the region of vortex cavitation by the QAS additive. The effect of the formation of cylindrical micelles is reproduced with computational fluid dynamics (CFD) simulations by including viscoelastic characteristics for the flow. It is demonstrated that viscoelasticity can reduce turbulence and suppress cavitation, and subsequently increase the injector’s volumetric efficiency.
Physics of Fluids | 2018
Homa Naseri; Phoevos Koukouvinis; Ilias Malgarinos; Manolis Gavaises
The effect of viscoelasticity on turbulent cavitating flow inside a nozzle is simulated for Phan-Thien-Tanner (PTT) fluids. Two different flow configurations are used to show the effect of viscoelasticity on different cavitation mechanisms, namely, cloud cavitation inside a step nozzle and string cavitation in an injector nozzle. In incipient cavitation condition in the step nozzle, small-scale flow features including cavitating microvortices in the shear layer are suppressed by viscoelasticity. Flow turbulence and mixing are weaker compared to the Newtonian fluid, resulting in suppression of microcavities shedding from the cavitation cloud. Moreover, mass flow rate fluctuations and cavity shedding frequency are reduced by the stabilizing effect of viscoelasticity. Time averaged values of the liquid volume fraction show that cavitation formation is strongly suppressed in the PTT viscoelastic fluid, and the cavity cloud is pushed away from the nozzle wall. In the injector nozzle, a developed cloud cavity c...
International Journal of Engine Research | 2018
Phoevos Koukouvinis; I.K. Karathanassis; Manolis Gavaises
The operation of a high-pressure, piston-plunger fuel pump oriented for use in the common rail circuit of modern diesel engines for providing fuel to the injectors is investigated in this study from a numerical perspective. Both the suction and pressurization phases of the pump stroke were simulated with the overall flow time being in the order of 12 × 10−3 s. The topology of the cavitating flow within the pump configuration was captured through the use of an equation of state implemented in the framework of a barotropic, homogeneous equilibrium model. Cavitation was found to set in within the pressure chamber as early as 0.2 × 10−3 s in the operating cycle, while the minimum liquid volume fraction detected was in the order of 60% during the second period of the valve opening. Increase in the in-cylinder pressure during the final stages of the pumping stroke leads to the collapse of the previously arisen cavitation structures and three layout locations, namely, the piston edge, the valve and valve-seat region and the outlet orifice, were identified as vulnerable to cavitation-induced erosion through the use of cavitation aggressiveness indicators.