Phong Ho
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phong Ho.
Mbio | 2013
Adam W. Whisnant; Hal P. Bogerd; Omar Flores; Phong Ho; Jason G. Powers; Natalia Sharova; Mario Stevenson; Chin Ho Chen; Bryan R. Cullen
ABSTRACT The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4+ peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms. MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
FEBS Letters | 2007
Li Huang; Phong Ho; Chin Ho Chen
This study discovered that betulinic acid (BA) is a potent proteasome activator that preferentially activates the chymotrypsin‐like activity of the proteasome. Chemical modifications can transform BA into proteasome inhibitors. Chemical modifications at the C‐3 position of BA resulted in compounds, such as dimethylsuccinyl BA (DSB), with various inhibitory activities against the human 20S proteasome. Interestingly, the proteasomal activation by BA and the inhibitory activity of DSB could be abrogated by introducing a side chain at the C‐28 position. In summary, this study discovered a class of small molecules that can either activate or inhibit human proteasome activity depending on side chain modifications.
Journal of Medicinal Chemistry | 2013
Zhao Dang; Phong Ho; Lei Zhu; Keduo Qian; Kuo Hsiung Lee; Li Huang; Chin Ho Chen
Bevirimat (1, BVM) is an anti-HIV agent that blocks HIV-1 replication by interfering with HIV-1 Gag-SP1 processing at a late stage of viral maturation. However, clinical trials of 1 have revealed a high baseline drug resistance that is attributed to naturally occurring polymorphisms in HIV-1 Gag. To overcome the drug resistance, 28 new derivatives of 1 were synthesized and tested against compound 1-resistant (BVM-R) HIV-1 variants. Among them, compound 6 exhibited much improved activity against several HIV-1 strains carrying BVM-R polymorphisms. Compound 6 was at least 20-fold more potent than 1 against the replication of NL4-3/V370A, which carries the most prevalent clinical BVM-R polymorphism in HIV-1 Gag-SP1. Thus, compound 6 merits further development as a potential anti-AIDS clinical trial candidate.
Journal of Medicinal Chemistry | 2009
Zhao Dang; Weihong Lai; Keduo Qian; Phong Ho; Kuo Hsiung Lee; Chin Ho Chen; Li Huang
We previously reported that [[N-[3beta-hydroxyllup-20(29)-en-28-oyl]-7-aminoheptyl]carbamoyl]methane (A43D, 4) was a potent HIV-1 entry inhibitor. However, 4 was inactive against HIV-2 virus, suggesting the structural requirements for targeting these two retroviruses are different. In this study, a series of new betulinic acid derivatives were synthesized, and some of them displayed selective anti-HIV-2 activity at nanomolar concentrations. In comparison to compounds with anti-HIV-1 activity, a shorter C-28 side chain is required for optimal anti-HIV-2 activity.
Antimicrobial Agents and Chemotherapy | 2008
Weihong Lai; Li Huang; Phong Ho; Zhijun Li; David C. Montefiori; Chin Ho Chen
ABSTRACT Betulinic acid (BA) derivatives can inhibit human immunodeficiency virus type 1 (HIV-1) entry or maturation depending on side chain modifications. While BA derivatives with antimaturation activity have attracted considerable interest, the anti-HIV-1 profile and molecular mechanism of BA derivatives with anti-HIV-1 entry activity (termed BA entry inhibitors) have not been well defined. In this study, we have found that two BA entry inhibitors, IC9564 and A43D, exhibited a broad spectrum of anti-HIV-1 activity. Both compounds inhibited multiple strains of HIV-1 from clades A, B, and C at submicromolar concentrations. Clade C viruses were more sensitive to the compounds than clade A and B viruses. Interestingly, IC9564 at subinhibitory concentrations could alter the antifusion activities of other entry inhibitors. IC9564 was especially potent in increasing the sensitivity of HIV-1YU2 Env-mediated membrane fusion to the CCR5 inhibitor TAK-779. Results from this study suggest that the V3 loop of gp120 is a critical determinant for the anti-HIV-1 activity of IC9564. IC9564 escape viruses contained mutations near the tip of the V3 loop. Moreover, IC9564 could compete with the binding of V3 monoclonal antibodies 447-52D and 39F. IC9564 also competed with the binding of gp120/CD4 complexes to chemokine receptors. In summary, these results suggest that BA entry inhibitors can potently inhibit a broad spectrum of primary HIV-1 isolates by targeting the V3 loop of gp120.
Bioorganic & Medicinal Chemistry Letters | 2012
Zhao Dang; Keduo Qian; Phong Ho; Lei Zhu; Kuo Hsiung Lee; Li Huang; Chin Ho Chen
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.
Bioorganic & Medicinal Chemistry | 2008
Li Huang; Donglei Yu; Phong Ho; Keduo Qian; Kuo Hsiung Lee; Chin Ho Chen
This study discovered that glycyrrhetinic acid inhibited the human 20S proteasome at 22.3microM. Esterification of the C-3 hydroxyl group on glycyrrhetinic acid with various carboxylic acid reagents yielded a series of analogs with marked improved potency. Among the derivatives, glycyrrhetinic acid 3-O-isophthalate (17) was the most potent compound with IC(50) of 0.22microM, which was approximately 100-fold more potent than glycyrrhetinic acid.
PLOS ONE | 2011
Li Huang; Phong Ho; Jie Yu; Lei Zhu; Kuo Hsiung Lee; Chin Ho Chen
Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.
Letters in Drug Design & Discovery | 2007
Li Huang; Donglei Yu; Phong Ho; Kuo Hsiung Lee; Chin Ho Chen
We previously reported a bi-functional betulinic acid derivative, A12-2 (4), containing an optimized C-28 side chain that exhibits potent anti-HIV activity by inhibiting both HIV-1 entry and maturation. Compound 4 contains C-3 and C-28 side chains that are pharmacophores for anti-HIV maturation and entry activity, respectively. The betulinic acid core, which serves as a molecular scaffold for compound 4, is also important for anti-HIV activity. The main purposes of the present study were to investigate the structure-activity relationships (SAR) of both the C-3 side chain and scaffold of 4. Further modification of the C-3 side chain of 4 suggested that both bulkier and smaller C-3 substituents negatively impacted the anti-HIV-1 activity. SAR study of the scaffold indicated that the betulinic acid moiety of 4 could be replaced with other scaffolds while still remaining active against HIV-1 replication. Among the synthesized compounds, the most effective molecular scaffold for anti-HIV activity remained to be betulinic acid (0.0026 μM), followed by moronic acid, ursolic acid, and oleanolic acid. On the other hand, substitution of the betulinic acid moiety of 4 with glycyrrhetinic acid or lithocholic acid completely abolished anti-HIV activity. Mechanism of action studies indicated that all active terpenoid analogs of 4 retained both anti-HIV-1 entry and anti-HIV-1 maturation activities.
Bioorganic & Medicinal Chemistry Letters | 2011
Zhao Dang; Andrew Lin; Phong Ho; Dominique Soroka; Kuo Hsiung Lee; Li Huang; Chin Ho Chen
A new class of proteasome inhibitors was synthesized using lithocholic acid as a scaffold. Modification at the C-3 position of lithocholic acid with a series of acid acyl groups yielded compounds with a range of potency on proteasome inhibition. Among them, the phenylene diacetic acid hemiester derivative (13) displayed the most potent proteasome inhibition with IC(50) = 1.9 μM. Enzyme kinetic analysis indicates that these lithocholic acid derivatives are noncompetitive inhibitors of the proteasome.