Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Photini Sinnis is active.

Publication


Featured researches published by Photini Sinnis.


Cell | 1992

The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites

Carla Cerami; Ute Frevert; Photini Sinnis; Béla Takács; Pedro Clavijo; Manuel J. Santos; Victor Nussenzweig

Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. We show here that recombinant Plasmodium falciparum circumsporozoite protein (CS) binds specifically to regions of the plasma membrane of hepatocytes exposed to circulating blood in the Disse space. No binding has been detected in other organs, or even in other regions of the hepatocyte membrane. The interaction of CS with hepatocytes, as well as sporozoite invasion of HepG2 cells, is inhibited by synthetic peptides representing the evolutionarily conserved region II of CS. We conclude that region II is a sporozoite ligand for hepatocyte receptors localized to the basolateral domain of the plasma membrane. Our findings provide a rational explanation for the target cell specificity of malaria sporozoites.


Cell Host & Microbe | 2008

The Fatty Acid Biosynthesis Enzyme FabI Plays a Key Role in the Development of Liver-Stage Malarial Parasites

Min Yu; T. R. Santha Kumar; Louis J. Nkrumah; Alida Coppi; Silke Retzlaff; Celeste D. Li; Brendan J. Kelly; Pedro A. Moura; Viswanathan Lakshmanan; Joel S. Freundlich; Juan Carlos Valderramos; Catherine Vilchèze; Mark J. Siedner; Jennifer H. Tsai; Brie Falkard; Amar Bir Singh Sidhu; Lisa A. Purcell; Paul Gratraud; Laurent Kremer; Andrew P. Waters; Guy Alan Schiehser; David P. Jacobus; Chris J. Janse; Arba L. Ager; William R. Jacobs; James C. Sacchettini; Volker Heussler; Photini Sinnis; David A. Fidock

The fatty acid synthesis type II pathway has received considerable interest as a candidate therapeutic target in Plasmodium falciparum asexual blood-stage infections. This apicoplast-resident pathway, distinct from the mammalian type I process, includes FabI. Here, we report synthetic chemistry and transfection studies concluding that Plasmodium FabI is not the target of the antimalarial activity of triclosan, an inhibitor of bacterial FabI. Disruption of fabI in P. falciparum or the rodent parasite P. berghei does not impede blood-stage growth. In contrast, mosquito-derived, FabI-deficient P. berghei sporozoites are markedly less infective for mice and typically fail to complete liver-stage development in vitro. This defect is characterized by an inability to form intrahepatic merosomes that normally initiate blood-stage infections. These data illuminate key differences between liver- and blood-stage parasites in their requirements for host versus de novo synthesized fatty acids, and create new prospects for stage-specific antimalarial interventions.


Cellular Microbiology | 2007

Plasmodium sporozoites trickle out of the injection site

Lucy Megumi Yamauchi; Alida Coppi; Georges Snounou; Photini Sinnis

Plasmodium sporozoites make a remarkable journey from the skin, where they are deposited by an infected Anopheline mosquito, to the liver, where they invade hepatocytes and develop into exoerythrocytic stages. Although much work has been done to elucidate the molecular mechanisms by which sporozoites invade hepatocytes, little is known about the interactions between host and parasite before the sporozoite enters the blood circulation. It has always been assumed that sporozoites rapidly exit the injection site, making their interactions with the host at this site, brief and difficult to study. Using quantitative PCR, we determined the kinetics with which sporozoites leave the injection site and arrive in the liver and found that the majority of infective sporozoites remain in the skin for hours. We then performed sub‐inoculation experiments which confirmed these findings and showed that the pattern of sporozoite exit from the injection site resembles a slow trickle. Last, we found that drainage of approximately 20% of the sporozoite inoculum to the lymphatics is associated with a significant enlargement of the draining lymph node, a response not observed after intravenous inoculation. These findings indicate that there is ample time for host and parasite to interact at the inoculation site and are of relevance to the pre‐erythrocytic stage malaria vaccine effort.


Journal of Experimental Medicine | 2011

The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host

Alida Coppi; Ramya Natarajan; Gabriele Pradel; Brandy L. Bennett; Eric R. James; Mario Roggero; Giampietro Corradin; Cathrine Persson; Rita Tewari; Photini Sinnis

Conformational changes influence functional properties of circumsporozoite protein expressed on the surface of Plasmodium sporozoites.


Infection and Immunity | 2005

Quantitative Dynamics of Plasmodium yoelii Sporozoite Transmission by Infected Anopheline Mosquitoes

Darcy L. Medica; Photini Sinnis

ABSTRACT Malaria transmission begins with the injection of Plasmodium sporozoites into the skin of a vertebrate host by infected anopheline mosquitoes. Although the size of the sporozoite inoculum likely affects the course of the disease, the number of sporozoites injected by infected mosquitoes has not been determined in vivo. Using a quantitative PCR assay, we determined the number of sporozoites injected into mice by single mosquitoes. Analysis of 59 mosquito feedings showed that a single infected mosquito injected between 0 and 1,297 sporozoites, with a mean of 123 and a median of 18. Twenty-two percent of infected mosquitoes injected no sporozoites. The number of sporozoites injected was only weakly correlated to the salivary gland load. To better understand the large variability in sporozoite injection among mosquitoes, we quantified the sporozoites injected by individual mosquitoes on three different days. Approximately 20% of moderately to heavily infected mosquitoes injected few to no sporozoites on all 3 days, suggesting that some mosquitoes are poor transmitters of sporozoites. Other mosquitoes injected high numbers of sporozoites on at least one of the days observed and minimal numbers on the other day(s), supporting the hypothesis that sporozoite injection is discontinuous, a pattern that may aid in the establishment of malaria infection.


Journal of Experimental Medicine | 2005

The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion

Alida Coppi; Consuelo Pinzon-Ortiz; Christina Hutter; Photini Sinnis

The circumsporozoite protein (CSP) is the major surface protein of Plasmodium sporozoites, the infective stage of malaria. Although CSP has been extensively studied as a malaria vaccine candidate, little is known about its structure. Here, we show that CSP is proteolytically cleaved by a papain family cysteine protease of parasite origin. Our data suggest that the highly conserved region I, found just before the repeat region, contains the cleavage site. Cleavage occurs on the sporozoite surface when parasites contact target cells. Inhibitors of CSP processing inhibit cell invasion in vitro, and treatment of mice with E-64, a highly specific cysteine protease inhibitor, completely inhibits sporozoite infectivity in vivo.


Molecular & Cellular Proteomics | 2013

Total and putative surface proteomics of malaria parasite salivary gland sporozoites

Scott E. Lindner; Kristian E. Swearingen; Anke Harupa; Ashley M. Vaughan; Photini Sinnis; Robert L. Moritz; Stefan H. I. Kappe

Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage of infection.


Antimicrobial Agents and Chemotherapy | 2006

Antimalarial Activity of Allicin, a Biologically Active Compound from Garlic Cloves

Alida Coppi; Melissa Cabinian; David Mirelman; Photini Sinnis

ABSTRACT The incidence of malaria is increasing, and there is an urgent need to identify new drug targets for both prophylaxis and chemotherapy. Potential new drug targets include Plasmodium proteases that play critical roles in the parasite life cycle. We have previously shown that the major surface protein of Plasmodium sporozoites, the circumsporozoite protein (CSP), is proteolytically processed by a parasite-derived cysteine protease, and this processing event is temporally associated with sporozoite invasion of host cells. E-64, a cysteine protease inhibitor, inhibits CSP processing and prevents invasion of host cells in vitro and in vivo. Here we tested allicin, a cysteine protease inhibitor found in garlic extracts, for its ability to inhibit malaria infection. At low concentrations, allicin was not toxic to either sporozoites or mammalian cells. At these concentrations, allicin inhibited CSP processing and prevented sporozoite invasion of host cells in vitro. In vivo, mice injected with allicin had decreased Plasmodium infections compared to controls. When sporozoites were treated with allicin before injection into mice, malaria infection was completely prevented. We also tested allicin on erythrocytic stages and found that a 4-day regimen of allicin administered either orally or intravenously significantly decreased parasitemias and increased the survival of infected mice by 10 days. Together, these experiments demonstrate that the same cysteine protease inhibitor can target two different life cycle stages in the vertebrate host.


Molecular and Biochemical Parasitology | 1997

Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum

Sacha Sidjanski; Jerome P. Vanderberg; Photini Sinnis

In the mosquito, Plasmodium sporozoites rupture from oocysts found on the midgut wall, circulate in the hemolymph and invade salivary glands where they wait to be injected into a vertebrate host during a bloodmeal. The mechanisms by which sporozoites specifically attach to and invade salivary glands are not known but evidence suggests that it is a receptor-mediated process. Here we show that the major surface protein of sporozoites, the circumsporozoite protein (CS), binds preferentially to salivary glands when compared to other organs exposed to the circulating hemolymph. In addition, we show that a peptide encompassing region I, a highly conserved sequence found in all rodent and primate Plasmodium CS proteins, inhibits binding of CS to mosquito salivary glands.


PLOS ONE | 2007

Sterile Protection against Malaria Is Independent of Immune Responses to the Circumsporozoite Protein

Anne Charlotte Grüner; Marjorie Mauduit; Rita Tewari; Jackeline F. Romero; Nadya Depinay; Michèle Kayibanda; Eliette Lallemand; Jean Marc Chavatte; Andrea Crisanti; Photini Sinnis; Dominique Mazier; Giampietro Corradin; Georges Snounou; Laurent Rénia

Background Research aimed at developing vaccines against infectious diseases generally seeks to induce robust immune responses to immunodominant antigens. This approach has led to a number of efficient bacterial and viral vaccines, but it has yet to do so for parasitic pathogens. For malaria, a disease of global importance due to infection by Plasmodium protozoa, immunization with radiation-attenuated sporozoites uniquely leads to long lasting sterile immunity against infection. The circumsporozoite protein (CSP), an important component of the sporozoites surface, remains the leading candidate antigen for vaccines targeting the parasites pre-erythrocytic stages. Difficulties in developing CSP-based vaccines that reproduce the levels of protection afforded by radiation-attenuated sporozoites have led us to question the role of CSP in the acquisition of sterile immunity. We have used a parasite transgenic for the CSP because it allowed us to test whether a major immunodominant Plasmodium antigen is indeed needed for the induction of sterile protective immunity against infection. Methodology/Main Findings We employed a P. berghei parasite line that expresses a heterologous CSP from P. falciparum in order to assess the role of the CSP in the protection conferred by vaccination with radiation-attenuated P. berghei parasites. Our data demonstrated that sterile immunity could be obtained despite the absence of immune responses specific to the CSP expressed by the parasite used for challenge. Conclusions We conclude that other pre-erythrocytic parasite antigens, possibly hitherto uncharacterised, can be targeted to induce sterile immunity against malaria. From a broader perspective, our results raise the question as to whether immunodominant parasite antigens should be the favoured targets for vaccine development.

Collaboration


Dive into the Photini Sinnis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fidel Zavala

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Satish Mishra

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Cerami

Kenneth S. Warren Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Tewari

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge