Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phuong Bui is active.

Publication


Featured researches published by Phuong Bui.


Molecular and Cellular Endocrinology | 2010

Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia

Phuong Bui; Mazdak Bagherie-Lachidan; Scott P. Kelly

A primary cultured gill epithelium from the puffer fish Tetraodon nigroviridis was developed to examine the corticosteroid regulation of claudin isoform mRNA abundance in fish gills. Preparations were composed of polygonal epithelial cells exhibiting concentric apical microridges and zonula occludens-1 immunoreactivity along cell margins. No evidence was found to indicate the presence of Na(+)-K(+)-ATPase-immunoreactive or mitochondria-rich cells in cultured preparations. Therefore, epithelia appear to be composed of gill pavement cells (PVCs) only. An RT-PCR profile of 12 salinity responsive gill claudin tight junction (TJ) proteins (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b) revealed the absence of Tncldn6, -10d and -10e in cultured epithelia, suggesting that these isoforms are not associated with gill PVCs. Cortisol treatment of cultured epithelia dose-dependently increased or decreased mRNA abundance of select claudin isoforms. Transcript abundance of several claudin isoforms was unaffected by cortisol treatment. These data provide evidence for the cell specific distribution of claudins in fish gills and suggest that heterogeneous alterations in the abundance of select claudin isoforms contribute to the corticosteroid regulation of gill permeability.


Tissue barriers | 2013

Claudins in teleost fishes

Dennis Kolosov; Phuong Bui; Helen Chasiotis; Scott P. Kelly

Teleost fishes are a large and diverse animal group that represent close to 50% of all described vertebrate species. This review consolidates what is known about the claudin (Cldn) family of tight junction (TJ) proteins in teleosts. Cldns are transmembrane proteins of the vertebrate epithelial/endothelial TJ complex that largely determine TJ permeability. Cldns achieve this by expressing barrier or pore forming properties and by exhibiting distinct tissue distribution patterns. So far, ~63 genes encoding for Cldn TJ proteins have been reported in 16 teleost species. Collectively, cldns (or Cldns) are found in a broad array of teleost fish tissues, but select genes exhibit restricted expression patterns. Evidence to date strongly supports the view that Cldns play a vital role in the embryonic development of teleost fishes and in the physiology of tissues and organ systems studied thus far.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2011

Epithelial remodeling and claudin mRNA abundance in the gill and kidney of puffer fish ( Tetraodon biocellatus ) acclimated to altered environmental ion levels

Nicole M. Duffy; Phuong Bui; Mazdak Bagherie-Lachidan; Scott P. Kelly

In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na+-K+-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.


The Journal of Experimental Biology | 2014

Claudin-6, -10d and -10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis

Phuong Bui; Scott P. Kelly

Expression profiles of claudin-6, -10d and -10e in the euryhaline teleost fish Tetraodon nigroviridis revealed claudin-6 in brain, eye, gill and skin tissue, while claudin-10d and -10e were found in brain, gill and skin only. In fishes, the gill and skin are important tissue barriers that interface directly with surrounding water, but these organs generally function differently in osmoregulation. Therefore, roles for gill and skin claudin-6, -10d and -10e in the osmoregulatory strategies of T. nigroviridis were investigated. In the gill epithelium, claudin-6, -10d and -10e co-localized with Na+-K+-ATPase immunoreactive (NKA-ir) ionocytes, and differences in sub-cellular localization could be observed in hypoosmotic (freshwater, FW) versus hyperosmotic (seawater, SW) environments. Claudin-10d and -10e abundance increased in the gills of fish acclimated to SW versus FW, while claudin-6 abundance decreased in the gills of fish acclimated to SW. Taken together with our knowledge of claudin-6 and -10 function in other vertebrates, data support the idea that in SW-acclimated T. nigroviridis, these claudins are abundant in gill ionocytes, where they contribute to the formation of a Na+ shunt and ‘leaky’ epithelium, both of which are characteristic of salt-secreting SW fish gills. Skin claudin-10d and -10e abundance also increased in fish acclimated to SW versus those in FW, but so did claudin-6. In skin, claudin-6 was found to co-localize with NKA-ir cells, but claudin-10d and -10e did not. This study provides direct evidence that the gill epithelium contains salinity-responsive tight junction proteins that are abundant primarily in ionocytes. These same proteins also appear to play a role in the osmoregulatory physiology of the epidermis.


The Journal of Experimental Biology | 2016

An animal homolog of plant Mep/Amt transporters promotes ammonia excretion by the anal papillae of the disease vector mosquito Aedes aegypti

Helen Chasiotis; Adrian Ionescu; Lidiya Misyura; Phuong Bui; Kimberly Fazio; Jason Wang; Marjorie Patrick; Dirk Weihrauch; Andrew Donini

ABSTRACT The transcripts of three putative ammonia (NH3/NH4+) transporters, Rhesus-like glycoproteins AeRh50-1, AeRh50-2 and Amt/Mep-like AeAmt1 were detected in the anal papillae of larval Aedes aegypti. Quantitative PCR studies revealed 12-fold higher transcript levels of AeAmt1 in anal papillae relative to AeRh50-1, and levels of AeRh50-2 were even lower. Immunoblotting revealed AeAmt1 in anal papillae as a pre-protein with putative monomeric and trimeric forms. AeAmt1 was immunolocalized to the basal side of the anal papillae epithelium where it co-localized with Na+/K+-ATPase. Ammonium concentration gradients were measured adjacent to anal papillae using the scanning ion-selective electrode technique (SIET) and used to calculate ammonia efflux by the anal papillae. dsRNA-mediated reductions in AeAmt1 decreased ammonia efflux at larval anal papillae and significantly increased ammonia levels in hemolymph, indicating a principal role for AeAmt1 in ammonia excretion. Pharmacological characterization of ammonia transport mechanisms in the anal papillae suggests that, in addition to AeAmt1, the ionomotive pumps V-type H+-ATPase and Na+/K+-ATPase as well as NHE3 are involved in ammonia excretion at the anal papillae. Summary: An animal homolog of plant and bacterial ammonium transporters supports ammonia excretion at the anal papillae of mosquito larvae.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

Spatial and salinity-induced alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the pufferfish Tetraodon nigroviridis

Eric Clelland; Phuong Bui; Mazdak Bagherie-Lachidan; Scott P. Kelly

In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na(+)-K(+)-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015

Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure.

Phuong Bui; Scott P. Kelly

Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2017

Salinity responsive aquaporins in the anal papillae of the larval mosquito, Aedes aegypti

Hina Akhter; Lidiya Misyura; Phuong Bui; Andrew Donini

The larvae of the mosquito, Aedes aegypti normally inhabit freshwater (FW) where they face dilution of body fluids by osmotic influx of water. In response, the physiological actions of the anal papillae result in ion uptake while the Malpighian tubules and rectum work in concert to excrete excess water. In an apparent paradox, the anal papillae express aquaporins (AQPs) and are sites of water permeability which, if AQPs are expressed by the epithelium, apparently exaggerates the influx of water from their dilute environment. Recently, naturally breeding populations of A. aegypti were found in brackish water (BW), an environment which limits the osmotic gradient. Given that salinization of FW is an emerging environmental issue and that these larvae would presumably need to adjust to these changing conditions, this study investigates the expression of AQPs in the anal papillae and their response to rearing in hypo-osmotic and near isosmotic conditions. Transcripts of all six Aedes AQP homologs were detectable in the anal papillae and the transcript abundance of three AQP homologs in the papillae was different between rearing conditions. Using custom made antibodies, expression of two of these AQP homologs (AQP4 and AQP5) was localized to the syncytial epithelium of the anal papillae. Furthermore, the changes in transcript abundance of these two AQPs between the rearing conditions, were manifested at the protein level. Results suggest that AQP4 and AQP5 play an important physiological role in larval responses to changes in environmental salinity.


The Journal of Experimental Biology | 2017

A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation

Dennis Kolosov; Phuong Bui; Andrew Donini; Mike P. Wilkie; Scott P. Kelly

ABSTRACT This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a and tric were broadly expressed in larval lamprey, with the greatest abundance of ocln in the gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins, respectively, while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na+] and [Cl−] decreased, but not [Ca2+], and carcass moisture content increased. In association, Ocln abundance increased in the skin and kidney, but reduced in the gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance were also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate. Summary: A first look at TJ-associated MARVEL proteins in a basal vertebrate (agnathan) supports a role for Ocln, Ocln-a and Tric in the regulation of salt and water balance in freshwater.


Respiratory Physiology & Neurobiology | 2012

Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review

Helen Chasiotis; Dennis Kolosov; Phuong Bui; Scott P. Kelly

Collaboration


Dive into the Phuong Bui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge