Phuong T. Le
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Phuong T. Le.
Bioorganic & Medicinal Chemistry Letters | 2010
Hengmiao Cheng; Jacqui Elizabeth Hoffman; Phuong T. Le; Sajiv K. Nair; Stephan James Cripps; Jean Matthews; Christopher Ronald Smith; Michele Yang; Stan Kupchinsky; Klaus Ruprecht Dress; Martin Paul Edwards; Bridget Mccarthy Cole; Evan Walters; Christine Loh; Jacques Ermolieff; Andrea Fanjul; Ganesh B. Bhat; Jocelyn Herrera; Tom Pauly; Natilie Hosea; Genevieve Paderes; Paul A. Rejto
The design and development of a series of highly selective pyrrolidine carboxamide 11beta-HSD1 inhibitors are described. These compounds including PF-877423 demonstrated potent in vitro activity against both human and mouse 11beta-HSD1 enzymes. In an in vivo assay, PF-877423 inhibited the conversion of cortisone to cortisol. Structure guided optimization effort yielded potent and stable 11beta-HSD1 selective inhibitor 42.
Bioorganic & Medicinal Chemistry Letters | 2013
Hengmiao Cheng; Jacqui Elizabeth Hoffman; Phuong T. Le; Mason Alan Pairish; Robert Steven Kania; William Farrell; Shubha Bagrodia; Jing Yuan; Shaoxian Sun; Eric Zhang; Cathy Xiang; Deepak Dalvie; Sadayappan V. Rahavendran
PI3K, AKT and mTOR, key kinases from a frequently dysregulated PI3K signaling pathway, have been extensively pursued to treat a variety of cancers in oncology. Clinical trials of PF-04691502, a highly potent and selective ATP competitive kinase inhibitor of class 1 PI3Ks and mTOR, from 4-methylpyridopyrimidinone series, led to the discovery of a metabolite with a terminal carboxylic acid, PF-06465603. This paper discusses structure-based drug design, SAR and antitumor activity of the MPP derivatives with a terminal alcohol, a carboxylic acid or a carboxyl amide.
Bioorganic & Medicinal Chemistry Letters | 2012
Phuong T. Le; Hengmiao Cheng; Sacha Ninkovic; Michael Bruno Plewe; Xiaojun Huang; Hai Wang; Shubha Bagrodia; Shaoxian Sun; Daniel R. Knighton; Caroline M. LaFleur Rogers; Andrew Pannifer; Samantha Greasley; Deepak Dalvie; Eric Zhang
Lead optimization efforts that employed structure base drug design and physicochemical property based optimization leading to the discovery of a novel series of 4-methylpyrido pyrimidinone (MPP) are discussed. Synthesis and profile of 1, a PI3Kα/mTOR dual inhibitor, is highlighted.
Bioorganic & Medicinal Chemistry Letters | 2010
Michael Scott Visser; Kevin Daniel Freeman-Cook; Steven J. Brickner; Katherine E. Brighty; Phuong T. Le; Sarah K. Wade; Rhonda Monahan; Gary J. Martinelli; Kyle T. Blair; Dianna E. Moore
Novel hygromycin A derivatives bearing a variety of functionalized aminocyclitol moieties have been synthesized in an effort to increase the antibacterial activity and drug-like properties of this class of agents. A systematic study of the effect of alkylation and removal of the hydroxyls of the aminocyclitol directed us to a series of alkylated aminocyclitol derivatives with improved gram-positive activity.
Antimicrobial Agents and Chemotherapy | 2008
Gregory G. Stone; Dennis Girard; Steve Finegan; Joan Duignan; John Schafer; Meghan Maloney; Richard P. Zaniewski; Steven J. Brickner; Sarah K. Wade; Phuong T. Le; Michael D. Huband
ABSTRACT We evaluated a novel truncated hygromycin A analog in which the furanose ring was replaced with a 2-fluoro-2-cyclopropylethyl substituent for its activity against multidrug resistant gram-positive bacteria and compared its activity to the activities of linezolid, quinupristin-dalfopristin, and vancomycin. CE-156811 demonstrated robust in vitro activity against gram-positive bacteria that was comparable to that of linezolid.
Molecular Cancer Therapeutics | 2013
Ted W. Johnson; Simon Bailey; Benjamin J. Burke; Michael Raymond Collins; J. Jean Cui; Judy G. Deal; Ya-Li Deng; Martin Paul Edwards; Mingying He; Jacqui Elizabeth Hoffman; Robert L. Hoffman; Qinhua Huang; Robert Steven Kania; Phuong T. Le; Michele McTigue; Cynthia Louise Palmer; Paul F. Richardson; Neal W. Sach; Graham L. Smith; Lars D. Engstrom; Wenyue Hu; Hieu Lam; Justine L. Lam; Tod Smeal; Helen Y. Zou
Oncogenic fusions of anaplastic lymphoma kinase (ALK) define a subset of human lung adenocarcinoma. The 1st generation ALK inhibitor crizotinib demonstrated impressive clinical benefit in ALK-fusion positive lung cancers and was approved by the FDA for the treatment of ALK-fusion positive NSCLC in 2011. However, as seen with most kinase inhibitors, patients treated with crizotinib eventually develop resistance to therapy. Acquired ALK kinase domain mutations and disease progression in the central nervous system (CNS) are reported as main contributors to patient relapse after ALK inhibitor therapy. Preclinically, crizotinib lacks significant brain penetration and does not potently inhibit activity of ALK kinase domain mutants, so a drug discovery program was initiated aimed to develop a second generation ALK inhibitor that is more potent than existing ALK inhibitors, capable of inhibiting the resistant ALK mutants and penetrating the blood-brain-barrier. These objectives present a considerable challenge in kinase inhibitor chemical space. Here we report that PF-06463922, a novel small molecule ATP-competitive inhibitor of ALK/ROS1, showed exquisite potencies against non-mutant ALK (Ki 100 fold kinase selectivity against 95% of the kinases tested in a 207 recombinant kinase panel. Specific design considerations were developed leading to novel ATP-competitive kinase inhibitors with desired low efflux in cell lines over-expressing p-glycoprotein and breast cancer resistance protein, providing excellent blood-brain-barrier and cell penetration properties. Efforts to optimize ligand efficiency and lipophilic efficiency leveraging structure based drug design techniques led to ligands with overlapping broad spectrum potency and low efflux. Single and repeat dose preclinical rat in vivo studies of PF-06463922 demonstrated excellent oral bioavailability and CNS availability with free brain exposure approximately 30% of free plasma levels. In addition, CNS-directed safety studies showed no adverse events at predicted efficacious concentrations. It is anticipated that PF-06463922 with its potent activities on non-mutant ALK, ALK kinase domain mutations and CNS metastases would provide great promise for patients with ALK and ROS1 positive cancers. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):PR10. Citation Format: Ted W. Johnson, Simon Bailey, Benjamin J. Burke, Michael R. Collins, J. Jean Cui, Judy Deal, Ya-Li Deng, Martin P. Edwards, Mingying He, Jacqui Hoffman, Robert L. Hoffman, Qinhua Huang, Robert S. Kania, Phuong Le, Michele McTigue, Cynthia L. Palmer, Paul F. Richardson, Neal W. Sach, Graham L. Smith, Lars Engstrom, Wenyue Hu, Hieu Lam, Justine L. Lam, Tod Smeal, Helen Y. Zou. Is CNS availability for oncology a no-brainer? Discovery of PF-06463922, a novel small molecule inhibitor of ALK/ROS1 with preclinical brain availability and broad spectrum potency against ALK-resistant mutations. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr PR10.
Bioorganic & Medicinal Chemistry | 2015
Maria Angelica Linton; Benjamin J. Burke; Ted W. Johnson; Sacha Ninkovic; Ketan S. Gajiwala; Paul G. Richardson; Phuong T. Le
Incorporation of nitrogen is a common medicinal chemistry tactic to reduce logD values. Neighboring group participation influences logD, so the results are isomer dependent. The logD and logP differences observed between isomeric pyrimidines 1, 2 and 3 presumably result when the carbonyl or ether lone pairs are in close proximity to a heterocyclic nitrogen lone pair, recruiting water to bridge between the electron rich atoms. Various lipophilicity calculators did not discriminate between 1 (logD=2.6) and 3 (logD=1.0), but solvation energies using Poisson-Boltzmann and 3D-RISM methods rationalize the observed differences in lipophilicity among pyrimidine carboxamide isomers.
Cancer Research | 2010
Henry Cheng; Shubha Bagrodia; Simon Bailey; Dilip Bhumalkar; Klaus Ruprecht Dress; Martin Paul Edwards; Michael R. Gehring; Lisa Guo; Jacqui Elizabeth Hoffman; Qiyue Hu; Xiaojun Huang; Catherine Johnson; Ted O. Johnson; Robert Steven Kania; Daniel R. Knighton; Phuong T. Le; Haitao Li; Samuel Li; Kevin K.-C. Liu; Zhengyu Liu; Matthew A. Marx; Mitch Nambu; Sacha Ninkovic; Dawn Nowlin; Mason Alan Pairish; Andrew Pannifer; Michael Bruno Plewe; Caroline Rodgers; Graham Smith; Shaoxian Sun
Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC The phosphatidylinositol 3-kinase (PI3K) signaling pathway plays crucial roles in cell growth, proliferation and survival. Genomic aberrations in the PI3K pathway, such as mutational activation of PI3Kα or loss of function of tumor suppressor PTEN, have been closely linked to the development and progression of a wide range of cancers. Hence, inhibition of the key targets in the pathway, e.g. PI3K, AKT, mTOR, offers great potential for the treatment of cancer. In an effort to discover compounds that inhibit PI3Kα, a high throughput screen was carried out, and 4-methyl-pyrido-pyrimidine (MPP) derivatives were identified as potent and selective inhibitors of PI3Kα. For example, PF-00271897, 8-cyclopentyl-6-[3-(hydroxymethyl)phenyl]-4-methyl-2-(methylamino)pyrido[2,3-d]pyrimidin-7(8H)-one demonstrated PI3Kα Ki of 2.2 nM. Multiple crystal structures of inhibitors bound to PI3K gamma were determined to inform design and optimization of the ADMET properties of this lead series. Crystallographic studies with PI3K gamma protein indicated that the aminopyrimidine moiety forms two hydrogen bonds to the kinase backbone, and the aromatic moiety at the 6 position binds in a hydrophobic pocket. The X-ray structure suggested that the 4-methyl group on the MPP core structure conferred the excellent overall kinase selectivity to the series. The structure and SAR suggested optimization could come from keeping N-R group at 2 position very small and maintaining aromatic moiety at 6 position for hydrophobic interaction. Introduction of polar groups to the 8N side chains that are located in the ribose binding pocket increased both metabolic stability and solubility. Based on the overall properties, PF-04691502, 2-amino-8-[trans-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxypyridin-3-yl)-4-methylpyrido[2,3-d]pyrimidin-7(8H)-one, was selected as a clinical candidate. PF-04691502 demonstrated Kis of 1.2-2.2 nM against PI3K α, β, γ and δ isoforms, and Ki of 9.1 nM against recombinant mTOR. PF-04691502 inhibited AKT phosphorylation at S473 in BT20 breast cancer line with IC50 of 12 nM. PF-04691502 is highly selective for inhibition of PI3K family kinases as shown by lack of activity against a panel of >75 protein kinases, including the class III PI3K hVps34. In the in vivo rat PK studies, PF-04691502 demonstrated the following properties: Clearance = 5.2 ml/min/kg, Vdss = 1.4 L/kg, T1/2 = 3.1 h, F% = 63%. The design, synthesis, in vitro potency SAR, selectivity, ADMET of the MPP derivatives will be discussed. The crystal structure of PF-04691502 in PI3K gamma will also be presented. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 5779.
Archive | 2005
Hengmiao Pfizer Global Res. Dev. Cheng; Bridget Mccarthy Cole; Phuong T. Le
Archive | 2005
Hengmiao Cheng; Stephan James Cripps; Klaus Ruprecht Dress; Jacqui Elizabeth Hoffman; Buwen Huang; Stanley William Kupchinsky; Phuong T. Le; Sajiv K. Nair; Timothy James Parrott; Christopher Ronald Smith; Yong Wang; Yi Yang