Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phuongmai Nguyen is active.

Publication


Featured researches published by Phuongmai Nguyen.


Cancer Cell | 2010

SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress

Hyun-Seok Kim; Krish Patel; Kristi Muldoon-Jacobs; Kheem S. Bisht; Nukhet Aykin-Burns; J. Daniel Pennington; Riet van der Meer; Phuongmai Nguyen; Jason E. Savage; Kjerstin M. Owens; Athanassios Vassilopoulos; Ozkan Ozden; Seong Hoon Park; Keshav K. Singh; Sarki A. Abdulkadir; Douglas R. Spitz; Chu-Xia Deng; David Gius

The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3(-/-) mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in SIRT3(-/-) MEFs results in in vitro transformation and altered intracellular metabolism. Superoxide dismutase prevents transformation by a single oncogene in SIRT3(-/-) MEFs and reverses the tumor-permissive phenotype as well as stress-induced genomic instability. In addition, SIRT3(-/-) mice develop ER/PR-positive mammary tumors. Finally, human breast and other human cancer specimens exhibit reduced SIRT3 levels. These results identify SIRT3 as a genomically expressed, mitochondria-localized tumor suppressor.


Journal of Biological Chemistry | 1997

Regulation of Cyclin D1 by Calpain Protease

Yung Hyun Choi; Su Jae Lee; Phuongmai Nguyen; Joung Soon Jang; Jeen Lee; Ming-Lei Wu; Emiko Takano; Masatoshi Maki; Pierre A. Henkart; Jane B. Trepel

Cyclin D1, a critical positive regulator of G1 progression, has been implicated in the pathogenesis of certain cancers. Regulation of cyclin D1 occurs at the transcriptional and posttranscriptional level. Here we present evidence that cyclin D1 levels are regulated at the posttranscriptional level by the Ca2+-activated protease calpain. Serum starvation of NIH 3T3 cells resulted in rapid loss of cyclin D1 protein that was completely reversible by calpain inhibitors. Actinomycin D and lovastatin induced rapid loss of cyclin D1 in prostate and breast cancer cells that was reversible by calpain inhibitors and not by phenylmethylsulfonyl fluoride, caspase inhibitors, or lactacystin, a specific inhibitor of the 26 S proteasome. Treatment of intact NIH 3T3, prostate, and breast cancer cells with a calpain inhibitor dramatically increased the half-life of cyclin D1 protein. Addition of purified calpain to PC-3-M lysates resulted in Ca2+-dependent cyclin D1 degradation. Transient expression of the calpain inhibitor calpastatin increased cyclin D1 protein in serum-starved NIH 3T3 cells. Cyclins A, E, and B1 have been reported to be regulated by proteasome-associated proteolysis. The data presented here implicate calpain in cyclin D1 posttranslational regulation.


Clinical & Experimental Metastasis | 1996

Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-l-integrin

Raymond C. Bergan; Edward Kyle; Phuongmai Nguyen; Jane B. Trepel; Christian Ingui; Len Neckers

The isoflavinoid genistein is a protein-tyrosine kinase inhibitor which has been identified as a putative cancer prevention agent. Its consumption is associated with a low incidence of clinical metastatic prostate cancer in the face of a sustained high incidence of organ-confined prostate cancer. We therefore undertook studies to examine genisteins effect upon cell adhesion as one possible mechanism by which it could be acting as an antimetastatic agent. A morphogenic analysis revealed that genistein caused cell flattening in a variety of cell lines: PC3-M, PC3, and DU-145 prostate carcinoma cells, as well as MCF-7 breast carcinoma cells. Mechanistic studies focused on the highly metastatic PC3-M cell line, and revealed that cell flattening was accompanied by an increase in cell adhesion. Further investigations demonstrated that focal adhesion kinase (FAK) accumulated in areas of focal cell attachment, and that this accumulation occurred only when cells were actively undergoing genistein-mediated morphologic change. Concurrent formation of a complex between the cell attachment molecule, beta-l-integrin, and FAK was shown to occur, and to correlate with transient activation of FAK activity. Genistein is presented as a novel investigative tool for use in the study of molecular events involved in the process of cell adhesion.


Journal of Cellular Biochemistry | 2010

Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms

Jianjun Bao; Zhongping Lu; Joshua J. Joseph; Darin Carabenciov; Christopher C. Dimond; Liyan Pang; Leigh Samsel; J. Philip McCoy; Jaime Leclerc; Phuongmai Nguyen; David Gius; Michael N. Sack

SIRT3 is identified as the major mitochondrial deacetylase. Two distinct isoforms of the murine SIRT3 have been identified with the short isoform having no recognizable mitochondrial localization sequence (MLS) and the long isoform having a putative MLS. A recent study questions the mitochondrial deacetylase activity of this short isoform. In contrast, the long isoform has been shown to be predominantly mitochondrial with robust deacetylase activity. In this study, we investigate whether the amino‐terminus of the long SIRT3 isoform is a legitimate MLS and evaluate in‐situ mitochondrial deacetylase activity of both isoforms. We confirm the presence of long and short isoforms in murine liver and kidney. The long isoform is generated via intra‐exon splicing creating a frame‐shift to expose a novel upstream translation start site. Mitochondrial localization is significantly more robust following transfection of the long compared with the short isoform. Insertion of this alternatively spliced novel 5′ sequence upstream of a GFP‐reporter plasmid shows greater than 80% enrichment in mitochondria, confirming this region as a legitimate mitochondrial localization sequence. Despite lower mitochondrial expression of the short isoform, the capacity to deacetylate mitochondrial proteins and to restore mitochondrial respiration is equally robust following transient transfection of either isoform into SIRT3 knockout embryonic fibroblasts. How these alternative transcripts are regulated and whether they modulate distinct targets is unknown. Furthermore, in contrast to exclusive mitochondrial enrichment of endogenous SIRT3, overexpression of both isoforms shows nuclear localization. This overexpression effect, may partially account for previously observed divergent phenotypes attributed to SIRT3. J. Cell. Biochem. 110: 238–247, 2010. Published 2010 Wiley‐Liss, Inc.


Clinical Cancer Research | 2004

Abrogation of p21 Expression by Flavopiridol Enhances Depsipeptide-Mediated Apoptosis in Malignant Pleural Mesothelioma Cells

Dao M. Nguyen; William D. Schrump; G. Aaron Chen; Wilson S. Tsai; Phuongmai Nguyen; Jane B. Trepel; David S. Schrump

Purpose: Recent insights regarding the pathogenesis of malignant pleural mesothelioma (MPM) provide new opportunities for targeted molecular therapies for this highly lethal disease. The present study was undertaken to examine the effects of the histone deacetylase inhibitor, Depsipeptide (DP) FK228, in conjunction with the cyclin-dependent kinase inhibitor, Flavopiridol (FLA), in cultured MPM cells. Experimental Design: Proliferation and apoptosis in drug-treated, virally transduced, or control cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Apo-bromodeoxyuridine techniques. Western blot and ELISA techniques were used to examine signal transduction and cell cycle-related protein levels in MPM cells exposed to DP and/or FLA in the presence or absence of calphostin, phorbol-12,13-dibutyrate, 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole, or adenoviral p21 transduction. Results: DP (1–50 ng/ml × 6 h) or FLA (100–200 nm × 72 h) alone, mediated low-level, dose-dependent growth inhibition in MPM cells. In contrast, sequential DP/FLA treatment mediated marked growth inhibition and apoptosis in these cell lines. The cytotoxic effects of DP/FLA were considerably less pronounced in cultured normal cells. The proapoptotic effects of DP/FLA treatment coincided with inhibition of DP-mediated induction of p21 by FLA. Overexpression of p21 by adenoviral gene transfer techniques rendered MPM cells refractory to the cytotoxic effects of this treatment regimen. In p21 reporter assays, promoter activation by DP was antagonized by FLA. The magnitude of inhibition of DP-mediated p21 induction by FLA exceeded that observed with the pTEFb antagonist 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole. Calphostin C abrogated p21 induction mediated by DP and enhanced DP-mediated apoptosis in a manner comparable with FLA in MPM cells; in contrast, phorbol-12,13-dibutyrate blocked FLA-mediated inhibition of p21 induction by DP and markedly protected these cells from the apoptotic effects of sequential DP/FLA. Conclusions: FLA abrogates DP-mediated induction of p21 expression, in part, via inhibition of protein kinase C signaling and markedly potentiates the cytotoxic effects of DP in MPM cells.


Oncogene | 1999

Regulation of BRCA1 by protein degradation.

Mikhail V. Blagosklonny; Won G. An; Giovanni Melillo; Phuongmai Nguyen; Jane B. Trepel; Leonard M. Neckers

BRCA1, a tumor suppressor protein implicated in hereditary forms of breast and ovarian cancer, is transcriptionally regulated in a proliferation-dependent manner. In this study, we demonstrate a substantial role for proteolysis in regulating the BRCA1 steady-state protein level in several cell lines. N-acetyl-leu-leu-norleucinal (ALLN), an inhibitor of the proteasome, calpain, and cathepsins, caused BRCA1 protein to accumulate in the nucleus of several human breast, prostate, and melanoma cell lines which express low or undetectable basal levels of BRCA1 protein, but not in cells with high basal expression of BRCA1. Protease inhibition did not increase BRCA1 synthesis, nor change its mRNA level, but it dramatically prolonged the proteins half-life. In contrast to ALLN, lactacystin and PS341, two specific proteasome inhibitors, as well as calpastatin peptide and PD150606, two selective calpain inhibitors, had no effect on BRCA1 stability, whereas ALLM, an effective calpain and cathepsin inhibitor but weak proteasome inhibitor, did stimulate accumulation of BRCA1. Moreover, three inhibitors of acidic cysteine proteases, chloroquine, ammonium chloride and bafilomycin, were as effective as ALLN. These results demonstrate that degradation by a cathepsin-like protease in fine balance with BRCA1 transcription is responsible for maintaining the low steady-state level of BRCA1 protein seen in many cancer cells.


Molecular and Cellular Biology | 2008

BAT3 and SET1A Form a Complex with CTCFL/BORIS To Modulate H3K4 Histone Dimethylation and Gene Expression

Phuongmai Nguyen; Gil Bar-Sela; Lunching Sun; Kheem S. Bisht; Hengmi Cui; Elise C. Kohn; Andrew P. Feinberg; David Gius

ABSTRACT Chromatin status is characterized in part by covalent posttranslational modifications of histones that regulate chromatin dynamics and direct gene expression. BORIS (brother of the regulator of imprinted sites) is an insulator DNA-binding protein that is thought to play a role in chromatin organization and gene expression. BORIS is a cancer-germ line gene; these are genes normally present in male germ cells (testis) that are also expressed in cancer cell lines as well as primary tumors. This work identifies SET1A, an H3K4 methyltransferase, and BAT3, a cochaperone recruiter, as binding partners for BORIS, and these proteins bind to the upstream promoter regions of two well-characterized procarcinogenic genes, Myc and BRCA1. RNA interference (RNAi) knockdown of BAT3, as well as SET1A, decreased Myc and BRCA1 gene expression but did not affect the binding properties of BORIS, but RNAi knockdown of BORIS prevented the assembly of BAT3 and SET1A at the Myc and BRCA1 promoters. Finally, chromatin analysis suggested that BORIS and BAT3 exert their effects on gene expression by recruiting proteins such as SET1A that are linked to changes in H3K4 dimethylation. Thus, we propose that BORIS acts as a platform upon which BAT3 and SET1A assemble and exert effects upon chromatin structure and gene expression.


Oncogene | 2002

CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential

Ramon G Manzano; Luis M. Montuenga; Mark Dayton; Paul Dent; Ichiro Kinoshita; Silvestre Vicent; Ginger J. Gardner; Phuongmai Nguyen; Yung Hyun Choi; Jane B. Trepel; Nelly Auersperg; Michael J. Birrer

Although early stage ovarian cancer can be effectively treated with surgery and chemotherapy, the majority of cases present with advanced disease, which remains essentially incurable. Unfortunately, little is known about the genes important for the development and progression of this disease. In this study, the expression of 68 phosphatases was determined in immortalized ovarian epithelial cells (IOSE) and compared to ovarian cancer cell lines. CL100, a dual specificity phosphatase, displayed 10–25-fold higher expression in normal compared to malignant ovarian cell lines. Immunohistochemical staining of normal ovaries and 68 ovarian cancer specimens confirmed this differential expression. Re-expression of CL100 in ovarian cancer cells decreased adherent and non-adherent cell growth and induced phenotypic changes including loss of filopodia and lamellipodia with an associated decrease in cell motility. Induced expression of CL100 in ovarian cancer cells suppressed intraperitoneal tumor growth in nude mice. These results show for the first time that CL100 expression is altered in human ovarian cancer, that CL100 expression changes cell morphology and motility, and that it suppresses intraperitoneal growth of human ovarian epithelial cancer. These data suggest that down-regulation of CL100 may play a role in the progression of human ovarian cancer.


Oncogene | 1998

In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome.

Paolo Bonvini; Phuongmai Nguyen; Jane B. Trepel; Leonard M. Neckers

N-myc is a short-lived transcription factor, frequently amplified in human neuroblastomas. The ubiquitin-proteasome system is involved in the degradation of many short-lived cellular proteins and previous studies have shown that ubiquitin-dependent proteolysis is implicated in the turn-over of N-myc in vitro. However, calpain has also been implicated in N-myc degradation in vitro. Here we report that, in vivo, N-myc is a sensitive substrate for the 26S proteasome in N-myc amplified neuroblastoma cells. We observed that inhibition of the 26S proteasome with two inhibitors, ALLnL and lactacystin, led to an elevation of the N-myc protein steady-state and increased N-myc protein polyubiquitination, as revealed by ubiquitin Western blotting. Pulse-chase experiments have shown that the increased N-myc levels resulted from stabilization of the protein. In contrast treatment with several calpain and cathepsin inhibitors failed to block N-myc degradation in vivo. Furthermore, fluorescence microscopy of ALLnL-treated cells localized N-myc exclusively to the nuclear compartment, suggesting the absence of a requirement for transport to the cytoplasm prior to degradation.


Molecular Cancer Research | 2008

DNMT1 as a Molecular Target in a Multimodality-Resistant Phenotype in Tumor Cells

Mark Mishra; Kheem S. Bisht; Lunching Sun; Kristi Muldoon-Jacobs; Rania T. Awwad; Aradhana Kaushal; Phuongmai Nguyen; Lei Huang; J. Daniel Pennington; Stephanie Markovina; C. Matthew Bradbury; David Gius

We have previously shown that hydrogen peroxide–resistant permanent (OC-14) cells are resistant to the cytotoxicity of several exogenous oxidative and anticancer agents including H2O2, etoposide, and cisplatin; and we refer to this process as an oxidative multimodality-resistant phenotype (MMRP). Furthermore, OC-14 cells contain increased activator protein 1 activity, and inhibition of activator protein 1 reversed the MMRP. In this study, we show that permanent Rat-1 cell lines genetically altered to overexpress c-Fos also displayed a similar MMRP to H2O2, etoposide, and cisplatin as OC-14 cells. Gene expression analysis of the OC-14 cells and c-Fos–overexpressing cells showed increased DNMT1 expression. Where OC-14 and c-Fos–overexpressing cells were exposed to 5-aza-2′-deoxycytidine, which inhibits DNMT activity, a significant but incomplete reversal of the MMRP was observed. Thus, it seems logical to suggest that DNMT1 might be at least one target in the MMRP. Rat-1 cells genetically altered to overexpress DNMT1 were also shown to be resistant to the cytotoxicity of H2O2, etoposide, and cisplatin. Finally, somatic HCT116 knockout cells that do not express either DNMT1 (DNMT1−/−) or DNMT3B (DNMT3B−/−) were shown to be more sensitive to the cytotoxicity of H2O2, etoposide, and cisplatin compared with control HCT116 cells. This work is the first example of a role for the epigenome in tumor cell resistance to the cytotoxicity of exogenous oxidative (H2O2) or systemic (etoposide and cisplatin) agents and highlights a potential role for DNMT1 as a potential molecular target in cancer therapy. (Mol Cancer Res 2008;6(2):243–9)

Collaboration


Dive into the Phuongmai Nguyen's collaboration.

Top Co-Authors

Avatar

Jane B. Trepel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Gius

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kheem S. Bisht

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lunching Sun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Daniel Pennington

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sunmin Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Matthew Bradbury

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Frederic Mushinski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lei Huang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge