Pi-Xiao Wang
Wuhan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pi-Xiao Wang.
Nature Communications | 2016
Yan-Xiao Ji; Peng Zhang; Xiao-Jing Zhang; Yichao Zhao; Ke-Qiong Deng; Xi Jiang; Pi-Xiao Wang; Zan Huang; Hongliang Li
Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6–TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner.
Nature Medicine | 2017
Pi-Xiao Wang; Yan-Xiao Ji; Xiao-Jing Zhang; Ling-Ping Zhao; Zhen-Zhen Yan; Peng Zhang; Li-Jun Shen; Xia Yang; Jing Fang; Song Tian; Xueyong Zhu; Jun Gong; Xin Zhang; Qiao-Fang Wei; Yong Wang; Jing Li; Lu Wan; Qingguo Xie; Zhi-Gang She; Zhihua Wang; Zan Huang; Hongliang Li
Nonalcoholic steatohepatitis (NASH) is a progressive disease that is often accompanied by metabolic syndrome and poses a high risk of severe liver damage. However, no effective pharmacological treatment is currently available for NASH. Here we report that CASP8 and FADD-like apoptosis regulator (CFLAR) is a key suppressor of steatohepatitis and its metabolic disorders. We provide mechanistic evidence that CFLAR directly targets the kinase MAP3K5 (also known as ASK1) and interrupts its N-terminus-mediated dimerization, thereby blocking signaling involving ASK1 and the kinase MAPK8 (also known as JNK1). Furthermore, we identified a small peptide segment in CFLAR that effectively attenuates the progression of steatohepatitis and metabolic disorders in both mice and monkeys by disrupting the N-terminus-mediated dimerization of ASK1 when the peptide is expressed from an injected adenovirus-associated virus 8–based vector. Taken together, these findings establish CFLAR as a key suppressor of steatohepatitis and indicate that the development of CFLAR-peptide-mimicking drugs and the screening of small-molecular inhibitors that specifically block ASK1 dimerization are new and feasible approaches for NASH treatment.
Nature Communications | 2016
Pi-Xiao Wang; Xiao-Jing Zhang; Pengcheng Luo; Xi Jiang; Peng Zhang; Junhong Guo; Guang-Nian Zhao; Xueyong Zhu; Yan Zhang; Sijun Yang; Hongliang Li
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and a systemic pro-inflammatory response. Here we show that tumour necrosis factor receptor-associated factor 3 (TRAF3) is upregulated in mouse and human livers with hepatic steatosis. After 24 weeks on a high-fat diet (HFD), obesity, insulin resistance, hepatic steatosis and inflammatory responses are significantly ameliorated in liver-specific TRAF3-knockout mice, but exacerbated in transgenic mice overexpressing TRAF3 in hepatocytes. The detrimental effects of TRAF3 on hepatic steatosis and related pathologies are confirmed in ob/ob mice. We further show that in response to HFD, hepatocyte TRAF3 binds to TGF-β-activated kinase 1 (TAK1) to induce TAK1 ubiquitination and subsequent autophosphorylation, thereby enhancing the activation of downstream IKKβ–NF-κB and MKK–JNK–IRS1307 signalling cascades, while disrupting AKT–GSK3β/FOXO1 signalling. The TRAF3–TAK1 interaction and TAK1 ubiquitination are indispensable for TRAF3-regulated hepatic steatosis. In conclusion, hepatocyte TRAF3 promotes HFD-induced or genetic hepatic steatosis in a TAK1-dependent manner.
Journal of Hepatology | 2016
Mei Xiang; Pi-Xiao Wang; Aibing Wang; Xiao-Jing Zhang; Yaxing Zhang; Peng Zhang; Fanghua Mei; Man-Hua Chen; Hongliang Li
BACKGROUND & AIMS Tumor necrosis factor receptor-associated factor 1 (TRAF1) is an important adapter protein that is largely implicated in molecular events regulating immunity/inflammation and cell death. Although inflammation is closely related to and forms a vicious circle with insulin dysfunction and hepatic lipid accumulation, the role of TRAF1 in hepatic steatosis and the related metabolic disorders remains unclear. METHODS The participation of TRAF1 in the initiation and progression of hepatic steatosis was evaluated in high fat diet (HFD)-induced and genetic obesity. Mice with global TRAF1 knockout or liver-specific TRAF1 overexpression were employed to investigate the role of TRAF1 in insulin resistance, inflammation, and hepatic steatosis based on various phenotypic examinations. Molecular mechanisms underlying TRAF1-regulated hepatic steatosis were further explored in vivo and in vitro. RESULTS TRAF1 expression was significantly upregulated in the livers of NAFLD patients and obese mice and in palmitate-treated hepatocytes. In response to HFD administration or in ob/ob mice, TRAF1 deficiency was hepatoprotective, whereas the overexpression of TRAF1 in hepatocytes contributed to the pathological development of insulin resistance, inflammatory response and hepatic steatosis. Mechanistically, hepatocyte TRAF1 promotes hepatic steatosis through enhancing the activation of ASK1-mediated P38/JNK cascades, as evidenced by the fact that ASK1 inhibition abolished the exacerbated effect of TRAF1 on insulin dysfunction, inflammation, and hepatic lipid accumulation. CONCLUSIONS TRAF1 functions as a positive regulator of insulin resistance, inflammation, and hepatic steatosis dependent on the activation of ASK1-P38/JNK axis.
Journal of Hepatology | 2015
Pi-Xiao Wang; Ran Zhang; Ling Huang; Li-Hua Zhu; Ding-Sheng Jiang; Hou-Zao Chen; Yan Zhang; Song Tian; Xiao-Fei Zhang; Xiao-Dong Zhang; De-Pei Liu; Hongliang Li
BACKGROUND & AIMS Hepatic ischemia/reperfusion (I/R) injury is characterized by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9 in this progression is unclear. METHODS We investigated the function and molecular mechanisms of IRF9 in transgene and knockout mice subjected to warm I/R of the liver. Isolated hepatocytes from IRF9 transgene and knockout mice were subjected to hypoxia/reoxygenation (H/R) injury to determine the in vitro effects of IRF9. RESULTS The injuries were augmented in IRF9-overexpressing mice that were subjected to warm I/R of the liver. In contrast, a deficiency in IRF9 markedly reduced the necrotic area, serum alanine amino transferase/aspartate amino transferase (ALT/AST), immune cell infiltration, inflammatory cytokine levels, and hepatocyte apoptosis after liver I/R. Sirtuin (SIRT) 1 levels were significantly higher and the acetylation of p53 was decreased in the IRF9 knockout mice. Notably, IRF9 suppressed the activity of the SIRT1 promoter luciferase reporter and deacetylase activity. Liver injuries were significantly more severe in the IRF9/SIRT1 double knockout (DKO) mice in the I/R model, eliminating the protective effects observed in the IRF9 knockout mice. CONCLUSIONS IRF9 has a novel function of inducing hepatocyte apoptosis after I/R injury by decreasing SIRT1 expression and increasing acetyl-p53 levels. Targeting IRF9 may be a potential strategy for ameliorating ischemic liver injury after liver surgery.
Journal of Hepatology | 2016
Junfei Hu; Xue-Hai Zhu; Xiao-Jing Zhang; Pi-Xiao Wang; Ran Zhang; Peng Zhang; Guang-Nian Zhao; Lu Gao; Xiao-Fei Zhang; Song Tian; Hongliang Li
BACKGROUND & AIMS The hallmarks of hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, include severe cell death and inflammatory responses that contribute to early graft failure and a higher incidence of organ rejection. Unfortunately, effective therapeutic strategies are limited. Tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 3 transduces apoptosis and/or inflammation-related signaling pathways to regulate cell survival and cytokine production. However, the role of TRAF3 in hepatic I/R-induced liver damage remains unknown. METHODS Hepatocyte- or myeloid cell-specific TRAF3 knockdown or transgenic mice were subjected to an I/R model in vivo, and in vitro experiments were performed by treating primary hepatocytes from these mice with hypoxia/reoxygenation stimulation. The function of TRAF3 in I/R-induced liver damage and the potential underlying mechanisms were investigated through various phenotypic analyses and biological approaches. RESULTS Hepatocyte-specific, but not myeloid cell-specific, TRAF3 deficiency reduced cell death, inflammatory cell infiltration, and cytokine production in both in vivo and in vitro hepatic I/R models, whereas hepatic TRAF3 overexpression resulted in the opposite effects. Mechanistically, TRAF3 directly binds to TAK1, which enhances the activation of the downstream NF-κB and JNK pathways. Importantly, inhibition of TAK1 almost completely reversed the TRAF3 overexpression-mediated exacerbation of I/R injury. CONCLUSIONS TRAF3 is a novel hepatic I/R mediator that promotes liver damage and inflammation via TAK1-dependent activation of the JNK and NF-κB pathways. Inhibition of hepatic TRAF3 may represent a promising approach to protect the liver against I/R injury-related diseases.
Molecular and Cellular Biology | 2014
Shu-Min Zhang; Lu Gao; Xiao-Fei Zhang; Ran Zhang; Li-Hua Zhu; Pi-Xiao Wang; Song Tian; Da Yang; Ke Chen; Ling Huang; Xiao-Dong Zhang; Hongliang Li
ABSTRACT Interferon regulatory factor 8 (IRF8), a member of the IRF transcription factor family, was recently implicated in vascular diseases. In the present study, using the mouse left carotid artery wire injury model, we unexpectedly observed that the expression of IRF8 was greatly enhanced in smooth muscle cells (SMCs) by injury. Compared with the wild-type controls, IRF8 global knockout mice exhibited reduced neointimal lesions and maintained SMC marker gene expression. We further generated SMC-specific IRF8 transgenic mice using an SM22α-driven IRF8 plasmid construct. In contrast to the knockout mice, mice with SMC-overexpressing IRF8 exhibited a synthetic phenotype and enhanced neointima formation. Mechanistically, IRF8 inhibited SMC marker gene expression through regulating serum response factor (SRF) transactivation in a myocardin-dependent manner. Furthermore, a coimmunoprecipitation assay indicated a direct interaction of IRF8 with myocardin, in which a specific region of myocardin was essential for recruiting acetyltransferase p300. Altogether, IRF8 is crucial in modulating SMC phenotype switching and neointima formation in response to vascular injury via direct interaction with the SRF/myocardin complex.
Nature Medicine | 2017
Guang-Nian Zhao; Peng Zhang; Jun Gong; Xiao-Jing Zhang; Pi-Xiao Wang; Miao Yin; Zhou Jiang; Li-Jun Shen; Yan-Xiao Ji; Jingjing Tong; Yutao Wang; Qiao-Fang Wei; Yong Wang; Xueyong Zhu; Xin Zhang; Jing Fang; Qingguo Xie; Zhi-Gang She; Zhihua Wang; Zan Huang; Hongliang Li
Non-alcoholic steatohepatitis (NASH) is an increasingly prevalent liver pathology that can progress from non-alcoholic fatty liver disease (NAFLD), and it is a leading cause of cirrhosis and hepatocellular carcinoma. There is currently no pharmacological therapy for NASH. Defective lysosome-mediated protein degradation is a key process that underlies steatohepatitis and a well-recognized drug target in a variety of diseases; however, whether it can serve as a therapeutic target for NAFLD and NASH remains unknown. Here we report that transmembrane BAX inhibitor motif-containing 1 (TMBIM1) is an effective suppressor of steatohepatitis and a previously unknown regulator of the multivesicular body (MVB)-lysosomal pathway. Tmbim1 expression in hepatocytes substantially inhibited high-fat diet–induced insulin resistance, hepatic steatosis and inflammation in mice. Mechanistically, Tmbim1 promoted the lysosomal degradation of toll-like receptor 4 by cooperating with the ESCRT endosomal sorting complex to facilitate MVB formation, and the ubiquitination of Tmbim1 by the E3 ubiquitin ligase Nedd4l was required for this process. We also found that overexpression of Tmbim1 in the liver effectively inhibited a severe form of NAFLD in mice and NASH progression in monkeys. Taken together, these findings could lead to the development of promising strategies to treat NASH by targeting MVB regulators to properly orchestrate the lysosome-mediated protein degradation of key mediators of the disease.
British Journal of Pharmacology | 2015
Wen-Lin Cheng; Pi-Xiao Wang; Tao Wang; Yan Zhang; Cheng Du; Hongliang Li; Yong Ji
Atherosclerosis is a chronic inflammatory disease, in which ‘vulnerable plaques’ have been recognized as the underlying risk factor for coronary disease. Regulator of G‐protein signalling (RGS) 5 controls endothelial cell function and inflammation. In this study, we explored the effect of RGS5 on atherosclerosis and the potential underlying mechanisms.
Cell Death and Disease | 2014
Xiao Fei Zhang; Rui Zhang; Ling Huang; Pi-Xiao Wang; Yanqiong Zhang; Ding Sheng Jiang; Li-Hua Zhu; Song Tian; Xiao-Dong Zhang; Hongliang Li
Tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, is involved in immunity and in apoptotic processes in various cell types. However, little is known about its function and the molecular mechanism of its activation during liver injury. This study tested the hypothesis that TRAF1 is a mediator of cell injury after hepatic ischemia/reperfusion injury (I/R). In a mouse hepatic I/R injury model, we found that TRAF1 expression was highly induced. TRAF1 deficiency was liver protective, whereas sustained TRAF1 overexpression aggravated liver injury in response to hepatic I/R injury. Mechanistic studies demonstrated that a deficiency of TRAF1 in cultured hepatocytes led to the inhibition of NF-κB-mediated inflammatory responses, suppression of the ASK/JNK pro-death pathway and promotion of cellular regeneration capacity. In contrast, the converse occurred in hepatocyte-specific TRAF1 transgenic mice. TRAF1 activated the ASK1/JNK pathway and promoted hepatic injury. Our study demonstrates that TRAF1 is a crucial early mediator of hepatic I/R injury and suggests that TRAF1 may be a potential gene therapy target for the treatment of liver injury.