Pia Dosenovic
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pia Dosenovic.
Science | 2013
Florian Klein; Hugo Mouquet; Pia Dosenovic; Johannes F. Scheid; Louise Scharf; Michel C. Nussenzweig
Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1–neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.
Cell | 2015
Pia Dosenovic; Lotta von Boehmer; Amelia Escolano; Joseph G. Jardine; Natalia T. Freund; Alexander D. Gitlin; Andrew T. McGuire; Daniel W. Kulp; Thiago Y. Oliveira; Louise Scharf; John Pietzsch; Matthew D. Gray; Albert Cupo; Marit J. van Gils; Kai Hui Yao; Cassie Liu; Anna Gazumyan; Michael S. Seaman; Pamela J. Bjorkman; Rogier W. Sanders; John P. Moore; Leonidas Stamatatos; William R. Schief; Michel C. Nussenzweig
A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.
Immunity | 2016
Jon M. Steichen; Daniel W. Kulp; Talar Tokatlian; Amelia Escolano; Pia Dosenovic; Robyn L. Stanfield; Laura E. McCoy; Gabriel Ozorowski; Xiaozhen Hu; Oleksandr Kalyuzhniy; Bryan Briney; Torben Schiffner; Fernando Garces; Natalia T. Freund; Alexander D. Gitlin; Sergey Menis; Erik Georgeson; Michael Kubitz; Yumiko Adachi; Meaghan Jones; Andrew Ayk Mutafyan; Dong Soo Yun; Christian T. Mayer; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson; Darrell J. Irvine; Michel C. Nussenzweig; William R. Schief
Summary Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.
Journal of Virology | 2007
Lucy Breakwell; Pia Dosenovic; Gunilla B. Karlsson Hedestam; Mauro D'Amato; Peter Liljeström; John K. Fazakerley; Gerald M. McInerney
ABSTRACT The type I interferons (IFNs) are potent mediators of antiviral immunity, and many viruses have developed means to block their expression or their effects. Semliki Forest virus (SFV) infection induces rapid and profound silencing of host cell gene expression, a process believed to be important for the inhibition of the IFN response. In SFV-infected cells, a large proportion of the nonstructural protein nsp2 is found in the nucleus, but a role for this localization has not been described. In this work we demonstrate that a viral mutant, SFV4-RDR, in which the nuclear localization sequence of nsp2 has been rendered inactive, induces a significantly more robust IFN response in infected cells. This mutant virus replicates at a rate similar to that of the parental SFV4 strain and also shuts off host cell gene expression to similar levels, indicating that the general cellular shutoff is not responsible for the inhibition of IFN expression. Further, the rate of virus-induced nuclear translocation of early IFN transcription factors was not found to differ between the wild-type and mutant viruses, indicating that the effect of nsp2 is at a later stage. These results provide novel information about the mode of action of this viral IFN antagonist.
PLOS ONE | 2011
Javier Guenaga; Pia Dosenovic; Gilad Ofek; David Baker; William R. Schief; Peter D. Kwong; Gunilla B. Karlsson Hedestam; Richard T. Wyatt
The HIV-1 envelope glycoproteins (Env) gp120 and gp41 mediate entry and are the targets for neutralizing antibodies. Within gp41, a continuous epitope defined by the broadly neutralizing antibody 2F5, is one of the few conserved sites accessible to antibodies on the functional HIV Env spike. Recently, as an initial attempt at structure-guided design, we transplanted the 2F5 epitope onto several non-HIV acceptor scaffold proteins that we termed epitope scaffolds (ES). As immunogens, these ES proteins elicited antibodies with exquisite binding specificity matching that of the 2F5 antibody. These novel 2F5 epitope scaffolds presented us with the opportunity to test heterologous prime∶boost immunization strategies to selectively boost antibody responses against the engrafted gp41 2F5 epitope. Such strategies might be employed to target conserved but poorly immunogenic sites on the HIV-1 Env, and, more generally, other structurally defined pathogen targets. Here, we assessed ES prime∶boosting by measuring epitope specific serum antibody titers by ELISA and B cell responses by ELISpot analysis using both free 2F5 peptide and an unrelated ES protein as probes. We found that the heterologous ES prime∶boosting immunization regimen elicits cross-reactive humoral responses to the structurally constrained 2F5 epitope target, and that incorporating a promiscuous T cell helper epitope in the immunogens resulted in higher antibody titers against the 2F5 graft, but did not result in virus neutralization. Interestingly, two epitope scaffolds (ES1 and ES2), which did not elicit a detectable 2F5 epitope-specific response on their own, boosted such responses when primed with the ES5. Together, these results indicate that heterologous ES prime∶boost immunization regimens effectively focus the humoral immune response on the structurally defined and immunogen-conserved HIV-1 2F5 epitope.
Journal of Virology | 2009
Andreas Mörner; Iyadh Douagi; Mattias N. E. Forsell; Christopher Sundling; Pia Dosenovic; Sijy O'Dell; Barna Dey; Peter D. Kwong; Gerald Voss; Rigmor Thorstensson; John R. Mascola; Richard T. Wyatt; Gunilla B. Karlsson Hedestam
ABSTRACT Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4+ T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env.
Nature Communications | 2016
Andrew T. McGuire; Matthew D. Gray; Pia Dosenovic; Alexander D. Gitlin; Natalia T. Freund; John Petersen; Colin Correnti; William Johnsen; Robert Kegel; Andrew B. Stuart; Jolene Glenn; Michael S. Seaman; William R. Schief; Roland K. Strong; Michel C. Nussenzweig; Leonidas Stamatatos
VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.
Journal of Immunology | 2009
Pia Dosenovic; Bimal K. Chakrabarti; Martina Soldemo; Iyadh Douagi; Mattias N. E. Forsell; Yuxing Li; Adhuna Phogat; Staffan Paulie; James A. Hoxie; Richard T. Wyatt; Gunilla B. Karlsson Hedestam
The HIV-1 envelope glycoprotein (Env) functional spike has evolved multiple immune evasion strategies, and only a few broadly neutralizing determinants on the assembled spike are accessible to Abs. Serological studies, based upon Ab binding and neutralization activity in vitro, suggest that vaccination with current Env-based immunogens predominantly elicits Abs that bind nonneutralizing or strain-restricted neutralizing epitopes. However, the fractional specificities of the polyclonal mixture of Abs present in serum, especially those directed to conformational Env epitopes, are often difficult to determine. Furthermore, serological analyses do not provide information regarding how repeated Ag inoculation impacts the expansion and maintenance of Env-specific B cell subpopulations. Therefore, we developed a highly sensitive Env-specific B cell ELISPOT system, which allows the enumeration of Ab-secreting cells (ASC) from diverse anatomical compartments directed against different structural determinants of Env. In this study, we use this system to examine the evolution of B cell responses in mice immunized with engineered Env trimers in adjuvant. We demonstrate that the relative proportion of ASC specific for defined structural elements of Env is altered significantly by homologous booster immunizations. This results in the selective expansion of ASC directed against the variable regions of Env. We suggest that the B cell specificity and compartment analysis described in this study are important complements to serological mapping studies for the examination of B cell responses against subspecificities of a variety of immunogens.
Journal of Virology | 2010
Iyadh Douagi; Mattias N. E. Forsell; Christopher Sundling; Sijy O'Dell; Yu Feng; Pia Dosenovic; Yuxing Li; Robert A. Seder; Karin Loré; John R. Mascola; Richard T. Wyatt; Gunilla B. Karlsson Hedestam
ABSTRACT The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Carrie N. Arnold; Elaine Pirie; Pia Dosenovic; Gerald M. McInerney; Yu Xia; Nathaniel Wang; Xiaohong Li; Owen M. Siggs; Gunilla B. Karlsson Hedestam; Bruce Beutler
Using chemical germ-line mutagenesis, we screened mice for defects in the humoral immune response to a type II T-independent immunogen and an experimental alphavirus vector. A total of 26 mutations that impair humoral immunity were recovered, and 19 of these mutations have been positionally cloned. Among the phenovariants were bumble, cellophane, and Worker ascribed to mutations in Nfkbid, Zeb1, and Ruvbl2, respectively. We show that IκBNS, the nuclear IκB-like protein encoded by Nfkbid, is required for the development of marginal zone and peritoneal B-1 B cells and additionally required for extrafollicular antibody responses to T-independent and -dependent immunogens. Zeb1 is also required for marginal zone and peritoneal B-1 B-cell development as well as T-cell development, germinal center formation, and memory B-cell responses. Finally, Ruvbl2 is required for T-cell development and maximal T-dependent antibody responses. Collectively, the mutations that we identified give us insight into the points at which disruption of an antibody response can occur. All of the mutations identified to date directly affect lymphocyte development or function; none have an exclusive effect on cells of the innate immune system.