Pia Giovannelli
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pia Giovannelli.
Molecular Cancer Research | 2007
Lilian Varricchio; Antimo Migliaccio; Gabriella Castoria; Hiroshi Yamaguchi; A. de Falco; M Di Domenico; Pia Giovannelli; W. Farrar; Ettore Appella; Ferdinando Auricchio
This report offers direct evidence that association of the estradiol receptor (ER) with Src triggered by steroid agonists or growth factors controls breast and prostate cancer cell growth. This association is abolished in whole cells and in vitro by a six-amino-acid peptide that mimics the sequence around the phosphotyrosine residue in position 537 of the human ERα. The phosphorylated peptide, at nanomolar concentrations, is taken up by MCF-7 and LNCaP cells derived from human mammary and prostate cancers, respectively. In addition, to block the ER/Src interaction, the phosphopeptide inhibits Src/Erk pathway, cyclin D1 expression, and DNA synthesis induced by estradiol or androgen or triggered by epidermal growth factor. In contrast, no inhibition of the Src-mediated epidermal growth factor action on DNA synthesis is detectable in human mammary cancer cells that do not express ER (MDA-MB231), indicating that the peptide specifically targets the ER-associated Src. Remarkably, the peptide, in contrast with classic steroid antagonists, does not interfere in ER- or androgen receptor–dependent transcriptional activity. Nevertheless, it markedly inhibits the growth of MCF-7 cell xenografts induced in immunodepressed and estradiol-treated mice. The present report suggests that inhibition of association of steroid receptors with Src or other signaling effectors may have therapeutic applications for patients with ER-positive tumors. (Mol Cancer Res 2007;5(11):1213–21)
PLOS ONE | 2011
Gabriella Castoria; Loredana D'Amato; Alessandra Ciociola; Pia Giovannelli; Tiziana Giraldi; Leandra Sepe; Giovanni Paolella; Maria Vittoria Barone; Antimo Migliaccio; Ferdinando Auricchio
Background Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis.
Oncogene | 2012
Gabriella Castoria; Pia Giovannelli; Maria Lombardi; C De Rosa; T Giraldi; A. de Falco; Maria Vittoria Barone; Ciro Abbondanza; Antimo Migliaccio; Ferdinando Auricchio
We report that in breast cancer cells, tyrosine phosphorylation of the estradiol receptor alpha (ERalpha) by Src regulates cytoplasmic localization of the receptor and DNA synthesis. Inhibition of Src or use of a peptide mimicking the ERalpha p-Tyr537 sequence abolishes ERalpha tyrosine phosphorylation and traps the receptor in nuclei of estradiol-treated MCF-7 cells. An ERalpha mutant carrying a mutation of Tyr537 to phenylalanine (ER537F) persistently localizes in nuclei of various cell types. In contrast with ERalpha wt, ER537F does not associate with Ran and its interaction with Crm1 is insensitive to estradiol. Thus, independently of estradiol, ER537F is retained in nuclei, where it entangles FKHR-driving cell cycle arrest. Chromatin immunoprecipitation analysis reveals that overexpression of ER537F in breast cancer cells enhances FKHR interaction with cyclin D1 promoter. This mutant also counteracts cell transformation by the activated forms of Src or PI3-K. In conclusion, in addition to regulating receptor localization, ERalpha phosphorylation by Src is required for hormone responsiveness of DNA synthesis in breast cancer cells.
Steroids | 2010
Gabriella Castoria; Antimo Migliaccio; Pia Giovannelli; Ferdinando Auricchio
Estrogen receptor (ER) is a ligand-regulated transcription factor that controls human breast cancer cell proliferation. About 60-70% of human breast cancers express ER. In spite of major progress in the therapy of human breast cancer, many patients become resistant to pharmacologic treatments and develop metastatic breast tumors. Several mechanisms have been proposed to explain tumor progression and resistance to the therapies. However, the causes of hormone-dependent breast tumor progression as well as therapy resistance are still debated. An increasing body of evidence from our and other laboratories shows that in breast cancer cells, in addition to its classical transcriptional action, ER stimulates proliferative and anti-apoptotic signaling pathways in response to either ligand binding or growth factors. This discovery has led to the synthesis of new compounds specifically interfering in the rapid responses mediated by ER. It also suggests that the modalities currently in use for breast cancer treatment need to be reconsidered.
Oncotarget | 2016
Erika Di Zazzo; Giovanni Galasso; Pia Giovannelli; Marzia Di Donato; Annalisa Di Santi; Gustavo Cernera; Valentina Rossi; Ciro Abbondanza; Bruno Moncharmont; Antonio Agostino Sinisi; Gabriella Castoria; Antimo Migliaccio
Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy.
Molecular and Cellular Endocrinology | 2010
Antimo Migliaccio; Gabriella Castoria; Pia Giovannelli; Ferdinando Auricchio
Steroid receptors act as ligand-dependent transcriptional factors. It has been observed that in addition to responding to cognate hormones with transcription activation, once hormone bound they are also capable of rapid responses following association with signaling effectors in the extra nuclear compartment. This novel aspect of steroid hormone action could influence our view of the cross talk between growth factor and steroid receptors. Increasing evidence shows that in hormone-responsive cells, a cross talk occurs between growth factors (EGF, IGF-1) and steroid hormone receptors that reciprocally regulate their action. To date, this has mostly been explained by modulation of steroid receptor transcriptional activity through growth factor receptor signaling activation. However, it is now known that growth factors might also act on extra nuclear steroid receptors, activating them via a hormone-independent mechanism. On the other hand, extra nuclear steroid receptors can regulate growth factor receptor activity either directly interfering with their transduction pathways, or inducing autocrine growth factor secretion. Here we discuss findings indicating that EGF, like steroid hormones, induces association of steroid receptors with Src thereby activating pathways that can trigger cell proliferation and migration. Since mammary and prostate cancers respond to both steroid hormones and growth factors, this association might be a putative target for human cancer therapy. Findings from our laboratory supporting this view are discussed.
Molecular and Cellular Endocrinology | 2017
Marzia Di Donato; Gustavo Cernera; Pia Giovannelli; Giovanni Galasso; Antonio Bilancio; Antimo Migliaccio; Gabriella Castoria
Endocrine disrupting chemicals (EDCs) are man-made substances widespread in the environment that include, among many others, bisphenol A (BPA), organochlorinated pesticides and hormone derivatives detectable in meat from animals raised in concentrated animal feeding operations. Increasing evidence indicates that EDCs have a negative impact on human health as well as on male and female fertility. They may also be associated with some endocrine diseases and increased incidence of breast and prostate cancer. This review aims to summarize available data on the (potential) impact of some common EDCs, focusing particularly on BPA, prostate cancer and their mechanisms of action. These compounds interfere with normal hormone signal pathway transduction, resulting in prolonged exposure of receptors to stimuli or interference with cellular hormone signaling in target cells. Understanding the effects of BPA and other EDCs as well as their molecular mechanism(s) may be useful in sensitizing the scientific community and the manufacturing industry to the importance of finding alternatives to their indiscriminate use.
PLOS ONE | 2013
Gabriella Castoria; Pia Giovannelli; Marzia Di Donato; Ryo Hayashi; Claudio Arra; Ettore Appella; Ferdinando Auricchio; Antimo Migliaccio
Background Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR). Experimental Findings: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR. Conclusion This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the conservation of this process across divergent cancer cells and identifies new potential targets in the therapeutic approach to human cancers.
Oncotarget | 2017
Antonio Bilancio; Paola Bontempo; Marzia Di Donato; Mariarosaria Conte; Pia Giovannelli; Lucia Altucci; Antimo Migliaccio; Gabriella Castoria
Bisphenol A (BPA) belongs to the class of chemicals known as endocrine disruptors and has been also involved in the pathogenesis and progression of endocrine related cancer such as breast and prostate cancers. Here, we have investigated the effect of BPA in human prostate cancer LNCaP cells and in human non-transformed epithelial prostate EPN cells. Our data showed that BPA induces the down regulation of cyclin D1 expression and the upregulation of the cell cycle inhibitors p21 and p27, leading to cell cycle arrest. Interestingly, we found that the BPA anti-proliferative response depends on a strong and rapid activation of epidermal growth factor receptor (EGFR), which stimulates ERK-dependent pathway. This, in turn, induces expression of p53 and its phosphorylation on residue Ser15, which is responsible for cell cycle arrest. EGFR activation occurs upon a cross talk with androgen (AR) and estradiol receptor-β (ERβ) which are known to bind BPA. Altogether, these findings show a novel signaling pathway in which EGFR activation plays a key role on BPA-induced cell cycle inhibition through a pathway involving AR and ERβ/EGFR complexes, ERK and p53. Our results provide new insights for understanding the molecular mechanisms in human prostate cancer. On the other, they could allow the development of new compounds that may be used to overcome human prostate cancer resistance to endocrine therapy in promising target therapeutic approaches.
Frontiers in Endocrinology | 2015
Marzia Di Donato; Pia Giovannelli; Gustavo Cernera; Annalisa Di Santi; Irene Marino; Antonio Bilancio; Giovanni Galasso; Ferdinando Auricchio; Antimo Migliaccio; Gabriella Castoria
Prostate cancer (PCa) is the major cause of cancer-related death among the male population of Western society, and androgen-deprivation therapy (ADT) represents the first line in PCa treatment. However, although androgen receptor (AR) expression is maintained throughout the various stages of PCa, ADT frequently fails. Clinical studies have demonstrated that different androgen/AR signaling pathways operate in target tissues. AR stimulates growth and transformation of target cells, but under certain conditions slows down their proliferation. In this review, we discuss the role of AR in controlling different functions of mesenchymal and transformed mesenchymal cells. Findings here presented support the role of AR in suppressing proliferation and stimulating migration of stromal cells, with implications for current approaches to cancer therapy.