Pia Huusko
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pia Huusko.
Nature Genetics | 2004
Pia Huusko; Damaris Ponciano-Jackson; Maija Wolf; Jeff Kiefer; David O. Azorsa; Sukru Tuzmen; Don Weaver; Christiane M. Robbins; Tracy Moses; Minna Allinen; Sampsa Hautaniemi; Yidong Chen; Abdel G. Elkahloun; Mark Basik; G. Steven Bova; Lukas Bubendorf; Alessandro Lugli; Guido Sauter; Johanna Schleutker; Hilmi Ozcelik; Sabine Elowe; Tony Pawson; Jeffrey M. Trent; John D. Carpten; Olli Kallioniemi; Spyro Mousses
The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer.
Neoplasia | 2004
Maija Wolf; Spyro Mousses; Sampsa Hautaniemi; Ritva Karhu; Pia Huusko; Minna Allinen; Abdel G. Elkahloun; Outi Monni; Yidong Chen; Anne Kallioniemi; Olli P. Kallioniemi
Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH) on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classic chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28) and loss (18) were found, and their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13q, and gains at 1q and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, and 74-76 Mbp from the p-telomere), which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, and 17q (losses), and at 3q, 5p, and 6p (gains). Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P <.0001) overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.
British Journal of Cancer | 2001
M Allinen; Pia Huusko; S Mäntyniemi; Virpi Launonen; Robert Winqvist
Recently CHK2 was functionally linked to the p53 pathway, and mutations in these two genes seem to result in a similar Li–Fraumeni syndrome (LFS) or Li–Fraumeni-like syndrome (LFL) multi-cancer phenotype frequently including breast cancer. As CHK2 has been found to bind and regulate BRCA1, the product of one of the 2 known major susceptibility genes to hereditary breast cancer, it also more directly makes CHK2 a suitable candidate gene for hereditary predisposition to breast cancer. Here we have screened 79 Finnish hereditary breast cancer families for germline CHK2 alterations. Twenty-one of these families also fulfilled the criteria for LFL or LFS. All families had previously been found negative for germline BRCA1 BRCA2 and TP53 mutations, together explaining about 23% of hereditary predisposition to breast cancer in our country. Only one missense-type mutation, Ile157→Thr157, was detected. The high Ile157→ Thr157mutation frequency (6.5%) observed in healthy controls and the lack of other mutations suggest that CHK2 does not contribute significantly to the hereditary breast cancer or LFL-associated breast cancer risk, at least not in the Finnish population. For Ile157→ Thr157our result deviates from what has been reported previously.
American Journal of Human Genetics | 1998
Pia Huusko; Kati Pääkkönen; Virpi Launonen; Minna Pöyhönen; Guillermo Blanco; Antti Kauppila; Ulla Puistola; Heikki Kiviniemi; Marika Kujala; Jaakko Leisti; Robert Winqvist
This study was supported by the University of Oulu, Oulu University Hospital, the Finnish Cancer Society, the Cancer Foundation of Northern Finland, and the Finnish Breast Cancer Group. We also wish to thank Ake Borg, Arto Mannermaa, Jarmo Korkko, Helena Rahja, and Kari Mononen.
Clinical Cancer Research | 2005
Alessandro Lugli; Hanspeter Spichtin; Robert Maurer; Martina Mirlacher; Jeff Kiefer; Pia Huusko; David O. Azorsa; Luigi Terracciano; Guido Sauter; Olli-P. Kallioniemi; Spyro Mousses; Luigi Tornillo
Purpose: To comprehensively evaluate ephrin receptor B2 (EphB2) expression in normal and neoplastic tissues. EphB2 is a tyrosine kinase recently implicated in the deregulation of cell-to-cell communication in many tumors. Experimental Design: EphB2 protein expression was analyzed by immunohistochemistry on tissue microarrays that included 76 different normal tissues, >4,000 samples from 138 different cancer types, and 1,476 samples of colon cancer with clinical follow-up data. Results: We found most prominent EphB2 expression in the intestinal epithelium (colonic crypts) with cancer of the colorectum displaying the highest EphB2 positivity of all tumors. Positivity was found in 100% of 118 colon adenomas but in 33.3% of 45 colon carcinomas. EphB2 expression was also observed in 75 tumor categories, including serous carcinoma of the endometrium (34.8%), adenocarcinoma of the esophagus (33.3%), intestinal adenocarcinoma of the stomach (30.2%), and adenocarcinoma of the small intestine (70%). The occasional finding of strong EphB2 positivity in tumors without EphB2 positivity in the corresponding normal cells [adenocarcinoma of the lung (4%) and pancreas (2.2%)] suggests that deregulation of EphB2 signaling may involve up-regulation of the protein expression. In colon carcinoma, loss of EphB2 expression was associated with advanced stage (P < 0.0001) and was an indicator of poor overall survival (P = 0.0098). Conclusions: Our results provide an overview on the EphB2 protein expression in normal and neoplastic tissues. Deregulated EphB2 expression may play a role in several cancer types with loss of EphB2 expression serving as an indicator of the possible pathogenetic role of EphB2 signaling in the maintenance of tissue architecture of colon epithelium.
Cancer Genetics and Cytogenetics | 2001
Jaana Lahti-Domenici; Katrin Rapakko; Kati Pääkkönen; Minna Allinen; Heli Nevanlinna; Marika Kujala; Pia Huusko; Robert Winqvist
In the Finnish population, identified mutations in BRCA1 and BRCA2 account for a less than expected proportion of hereditary breast and ovarian cancer. All previous studies performed in our country have concentrated on finding germ-line mutations in the coding and splice-site regions of these two genes. Therefore, we wanted to use a different methodological approach and search for large genomic rearrangements, to exclude the possibility of biased BRCA1 and BRCA2 mutation spectra due to known limitations of the previously used PCR-based detection methods. Our results support earlier notions that other genes than BRCA1 and BRCA2 will explain a majority of the still unexplained cases of hereditary susceptibility to breast and ovarian cancer.
British Journal of Cancer | 2001
Rapakko K; M Allinen; Kirsi Syrjäkoski; Pia Vahteristo; Pia Huusko; Vähäkangas K; Hannaleena Eerola; Tommi Kainu; Olli Kallioniemi; Heli Nevanlinna; Robert Winqvist
We have screened for germline TP53 mutations in Finnish BRCA1 and BRCA2 mutation-negative families. This study represents the largest survey of the entire protein-encoding portion of TP53, and indicates that mutations are only found at conserved domains in breast cancer families also meeting the criteria for Li-Fraumeni/Li-Fraumeni-like syndrome, explaining only a very small additional fraction of the hereditary breast cancer cases.
Journal of Medical Genetics | 2006
Rick A. Kittles; Agnes Boffoe-Bonnie; Tracy Moses; Christiane M. Robbins; Chiledum Ahaghotu; Pia Huusko; Curtis A. Pettaway; Srinivasan Vijayakumar; James Bennett; Gerald Hoke; Terry Mason; Sally Weinrich; Jeffrey M. Trent; Francis S. Collins; Spyro Mousses; Joan E. Bailey-Wilson; Paulette Furbert-Harris; Georgia M. Dunston; Isaac Powell; John D. Carpten
Background: The EphB2 gene was recently implicated as a prostate cancer (PC) tumour suppressor gene, with somatic inactivating mutations occurring in ∼10% of sporadic tumours. We evaluated the contribution of EphB2 to inherited PC susceptibility in African Americans (AA) by screening the gene for germline polymorphisms. Methods: Direct sequencing of the coding region of EphB2 was performed on 72 probands from the African American Hereditary Prostate Cancer Study (AAHPC). A case-control association analysis was then carried out using the AAHPC probands and an additional 183 cases of sporadic PC compared with 329 healthy AA male controls. In addition, we performed an ancestry adjusted association study where we adjusted for individual ancestry among all subjects, in order to rule out a spurious association due to population stratification. Results: Ten coding sequence variants were identified, including the K1019X (3055A→T) nonsense mutation which was present in 15.3% of the AAHPC probands but only 1.7% of 231 European American (EA) control samples. We observed that the 3055A→T mutation significantly increased risk for prostate cancer over twofold (Fisher’s two sided test, p = 0.003). The T allele was significantly more common among AAHPC probands (15.3%) than among healthy AA male controls (5.2%) (odds ratio 3.31; 95% confidence interval 1.5 to 7.4; p = 0.008). The ancestry adjusted analyses confirmed the association. Conclusions: Our data show that the K1019X mutation in the EphB2 gene differs in frequency between AA and EA, is associated with increased risk for PC in AA men with a positive family history, and may be an important genetic risk factor for prostate cancer in AA.
Cancer Genetics and Cytogenetics | 2000
Virpi Launonen; Arto Mannermaa; Frej Stenbäck; Veli-Matti Kosma; Ulla Puistola; Pia Huusko; Maarit Anttila; Risto Bloigu; Seppo Saarikoski; Antti Kauppila; Robert Winqvist
Tumor specimens from 78 epithelial ovarian cancer patients were examined for loss of heterozygosity (LOH) at 11 microsatellite markers at chromosomes 3p14.2, 6q27, 8p12, 11p15.5, 11q23.1-q24, 16q24.3, and 17p13.1, to evaluate the involvement, possible clustering, and prognostic significance of these lesions in the progression of the disease. The LOH analysis was performed on polymerase chain reaction (PCR)-amplified DNA from sections of paraffin-embedded tumor and normal tissue pairs. In addition to primary tumors, specimens of metastatic tissues were studied from 19 patients. In the combined results from primary and metastatic tumors, LOH frequencies varied between 31% (6q27) and 69% (17p13.1). Only LOH at chromosomal regions 3p14.2 (D3S1300), 11p15.5 (D11S1318), 11q23.3-q24 (D11S1340 and D11S912), 16q24.3 (D16S476 and D16S3028), and 17p13.1 (D17S938) was associated with an adverse disease course. Our results indicate that LOH at 17p13.1 occurs independently from the other chromosomal sites studied, and is an early event in ovarian tumorigenesis. The LOH at 16q24.3, 11q23.3/q24, and 11p15.5 seems to occur later. The LOH at 11p15.5 and 11q23.3 was associated with reduced cancer-specific survival time; therefore, the studied markers could be located close to genes with influence on patient survival. Of the studied chromosomal regions, the most important tumor suppressor genes involved in the evolution of ovarian cancer appear to be located on chromosomes 11, 16, and 17. The genetic heterogeneity observed in primary and metastatic specimens demonstrates that there are multiple pathways involved in the progression of ovarian cancer.
European Journal of Human Genetics | 2004
Pia Huusko; Suh-Hang Hank Juo; Elizabeth Gillanders; Laura Sarantaus; Tommi Kainu; Pia Vahteristo; Minna Allinen; MaryPat Jones; Katrin Rapakko; Hannaleena Eerola; Carol Markey; Paula Vehmanen; Derek Gildea; Diane Freas-Lutz; Carl Blomqvist; Jaakko Leisti; Guillermo Blanco; Ulla Puistola; Jeffrey Trent; Joan Bailey-Wilson; Robert Winqvist; Heli Nevanlinna; Olli-P. Kallioniemi
Only a proportion of breast cancer families has germline mutations in the BRCA1 or BRCA2 genes, suggesting the presence of additional susceptibility genes. Finding such genes by linkage analysis has turned out to be difficult due to the genetic heterogeneity of the disease, phenocopies and incomplete penetrance of the mutations. Isolated populations may be helpful in reducing the level of genetic heterogeneity and in providing useful starting points for further genetic analyses. Here, we report results from a genome-wide linkage analysis of 14 high-risk breast cancer families from Finland. These families tested negative for BRCA1 and BRCA2 germline mutations and showed no linkage to the 13q21 region, recently proposed as an additional susceptibility locus. Suggestive linkage was seen at marker D2S364 (2q32) with a parametric two-point LOD score of 1.61 (θ=0), and an LOD score of 2.49 in nonparametric analyses. Additional genotyping of a 40 cM chromosomal region surrounding the region of interest yielded a maximum parametric two-point LOD score of 1.80 (θ=0) at D2S2262 and a nonparametric LOD score of 3.11 at an adjacent novel marker 11291M1 in BAC RP11-67G7. A nonparametric multipoint LOD score of 3.20 was seen at 11291M1 under the assumption of dominant inheritance. While not providing proof of linkage considering the small number of families and large number of laboratory and statistical analyses performed, these results warrant further studies of the 2q32 chromosomal region as a candidate breast cancer susceptibility locus. Both linkage and association studies are likely to be useful, particularly in other isolated populations.