Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pia Rantakari is active.

Publication


Featured researches published by Pia Rantakari.


Nature Immunology | 2015

Erratum: The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes

Pia Rantakari; Kaisa Auvinen; Norma Jäppinen; Maria Kapraali; Joona Valtonen; Marika Karikoski; Heidi Gerke; Imtiaz Iftakhar-E-Khuda; Johannes Keuschnigg; Eiji Umemoto; Kazuo Tohya; Masayuki Miyasaka; Kati Elima; Sirpa Jalkanen; Marko Salmi

In the lymphatic sinuses of draining lymph nodes, soluble lymph-borne antigens enter the reticular conduits in a size-selective manner and lymphocytes transmigrate to the parenchyma. The molecular mechanisms that control these processes are unknown. Here we unexpectedly found that PLVAP, a prototypic endothelial protein of blood vessels, was synthesized in the sinus-lining lymphatic endothelial cells covering the distal conduits. In PLVAP-deficient mice, both small antigens and large antigens entered the conduit system, and the transmigration of lymphocytes through the sinus floor was augmented. Mechanistically, the filtering function of the lymphatic sinus endothelium was dependent on diaphragms formed by PLVAP fibrils in transendothelial channels. Thus, in the lymphatic sinus, PLVAP forms a physical sieve that regulates the parenchymal entry of lymphocytes and soluble antigens.


Journal of Clinical Investigation | 2015

Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis

Chris J. Weston; Emma L. Shepherd; Lee C Claridge; Pia Rantakari; Stuart M. Curbishley; Jeremy W. Tomlinson; Stefan G. Hubscher; Gary M. Reynolds; Kristiina Aalto; Quentin M. Anstee; Sirpa Jalkanen; Marko Salmi; David J. Smith; Christopher P. Day; David H. Adams

Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.


Endocrinology | 2010

Hydroxysteroid (17β) Dehydrogenase 7 Activity Is Essential for Fetal de Novo Cholesterol Synthesis and for Neuroectodermal Survival and Cardiovascular Differentiation in Early Mouse Embryos

Heli Jokela; Pia Rantakari; Tarja Lamminen; Leena Strauss; Roxana Ola; Aino-Liisa Mutka; Helena Gylling; Tatu A. Miettinen; Pirjo Pakarinen; Kirsi Sainio; Matti Poutanen

Hydroxysteroid (17beta) dehydrogenase 7 (HSD17B7) has been shown to catalyze the conversion of both estrone to estradiol (17-ketosteroid reductase activity) and zymosterone to zymosterol (3-ketosteroid reductase activity involved in cholesterol biosynthesis) in vitro. To define the metabolic role of the enzyme in vivo, we generated knockout mice deficient in the enzyme activity (HSD17B7KO). The data showed that the lack of HSD17B7 results in a blockage in the de novo cholesterol biosynthesis in mouse embryos in vivo, and HSD17BKO embryos die at embryonic day (E) 10.5. Analysis of neural structures revealed a defect in the development of hemispheres of the front brain with an increased apoptosis in the neuronal tissues. Morphological defects in the cardiovascular system were also observed from E9.5 onward. Mesodermal, endodermal, and hematopoietic cells were all detected by the histological analysis of the visceral yolk sac, whereas no organized vessels were observed in the knockout yolk sac. Immunohistological staining for platelet endothelial cell adhesion molecule-1 indicated that the complexity of the vasculature also was reduced in the HSD17B7KO embryos, particularly in the head capillary plexus and branchial arches. At E8.5-9.5, the heart development and the looping of the heart appeared to be normal in the HSD17B7KO embryos. However, at E10.5 the heart was dilated, and the thickness of the cardiac muscle and pericardium in the HSD17B7KO embryos was markedly reduced, and immunohistochemical staining for GATA-4 revealed that HSD17B7KO embryos had a reduced number of myocardial cells. The septum of the atrium was also defected in the knockout mice.


Human Molecular Genetics | 2010

Inactivation of Palb2 Gene Leads to Mesoderm Differentiation Defect and Early Embryonic Lethality in Mice

Pia Rantakari; Jenni Nikkilä; Heli Jokela; Roxana Ola; Katri Pylkäs; Heidi Lagerbohm; Kirsi Sainio; Matti Poutanen; Robert Winqvist

Mutations of the PALB2 tumor suppressor gene in humans are associated with hereditary predisposition to breast and also some other cancers. In the present study, we have characterized mice deficient in Palb2. The data show that the Palb2((+/-)) mice are normal and fertile, and lack macroscopic tumors when followed up till the age of 8 months. Homozygous (HO) Palb2((-/-)) mice present with embryonic lethality and die at E9.5 at the latest. The mutant embryos are smaller in size, developmentally retarded and display defective mesoderm differentiation after gastrulation. In Palb2((-/-)) embryos, the expression of cyclin-dependent kinase inhibitor p21 is increased, and Palb2((-/-)) blastocysts show a growth defect in vitro. Hence, the phenotype of the Palb2((-/-)) mice in many regards resembles those previously reported for Brca1 and Brca2 knockout mice. The similarity in the phenotypes between Palb2, Brca1 and Brca2 knockout mice further supports the functional relationship shown in vitro for these three proteins. Accordingly, our data in vivo suggest that a key function for PALB2 is to interact with and to build up appropriate communication between BRCA1 and BRCA2, thereby licensing the successful performance of the physiological tasks mediated by these two proteins, particularly in homologous recombination and in proper DNA damage response signaling.


Circulation Research | 2013

CD44 Binds to Macrophage Mannose Receptor on Lymphatic Endothelium and Supports Lymphocyte Migration via Afferent Lymphatics

Marko Salmi; Marika Karikoski; Kati Elima; Pia Rantakari; Sirpa Jalkanen

Rationale: Macrophage mannose receptor (MRC) is one of the few molecules known to be involved in lymphocyte trafficking via the lymphatic vessels. In endothelial cells of efferent lymphatics, it binds L-selectin on lymphocytes. In afferent lymphatics, MRC mediates trafficking of both normal and malignant L-selectin–negative cells to the draining lymph nodes. Objective: This work was designed to search for additional lymphocyte ligands of MRC to elucidate how lymphocytes migrate into the draining lymph nodes. Methods and Results: Using immunoprecipitation and binding studies with natural and recombinant proteins, we show that MRC and CD44 can interact with each other. Fine mapping revealed that the cysteine-rich domain of MRC binds to the chondroitin sulfate side chains of CD44. In vivo homing experiments with MRC- and CD44-deficient mice verified that MRC and CD44 function as a receptor-ligand pair in supporting lymphocyte migration via the afferent lymphatics into the draining lymph nodes. Conclusions: These data identify a new counter-receptor for MRC and reveal CD44 as a new molecule involved in the poorly understood process of lymphocyte transit via the lymphatic vasculature.


The Journal of Steroid Biochemistry and Molecular Biology | 2009

Epithelial cells are the major site of hydroxysteroid (17β) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant

Julie Plante; Marc Simard; Pia Rantakari; Mélissa Côté; Pierre R. Provost; Matti Poutanen; Yves Tremblay

Many genes involved in the peripheral metabolism of androgens, including hydroxysteroid (17beta) dehydrogenases (HSD17B) 2 and 5, steroid 5alpha reductase 1, and 3alpha-HSD, are expressed in the developing lung. Because lung development is delayed by androgens and pathologies related to lung immaturity are major concerns for preterm neonates, we are interested in the elucidation of the androgen metabolism in developing lung. In the present report we have identified the cell types expressing HSD17B2 (testosterone into androstenedione) and androgen receptor in normal male and female mouse developing lung between the gestation days 15.5 and 17.5. In situ hybridization and immunohistochemistry revealed that HSD17B2 is expressed in epithelial cells of respiratory and conducting zones, and in mesenchymal cells. The androgen receptor protein was observed in the same cell types that HSD17B2, and in alpha-smooth muscle actin-positive cells surrounding arteries. No difference was observed for the location of HSD17B2 and androgen receptor expression at any time points studied, or according to sex. Taken together, our results are in concordance with the hypothesis that in mouse fetal lungs the level of androgen receptor occupancy is finely tuned by local HSD17B2 expression.


Cell Reports | 2013

SHARPIN Regulates Uropod Detachment in Migrating Lymphocytes

Jeroen Pouwels; Nicola De Franceschi; Pia Rantakari; Kaisa Auvinen; Marika Karikoski; Elina Mattila; Christopher J. Potter; John P. Sundberg; Nancy Hogg; Carl G. Gahmberg; Marko Salmi; Johanna Ivaska

SHARPIN-deficient mice display a multiorgan chronic inflammatory phenotype suggestive of altered leukocyte migration. We therefore studied the role of SHARPIN in lymphocyte adhesion, polarization, and migration. We found that SHARPIN localizes to the trailing edges (uropods) of both mouse and human chemokine-activated lymphocytes migrating on intercellular adhesion molecule-1 (ICAM-1), which is one of the major endothelial ligands for migrating leukocytes. SHARPIN-deficient cells adhere better to ICAM-1 and show highly elongated tails when migrating. The increased tail lifetime in SHARPIN-deficient lymphocytes decreases the migration velocity. The adhesion, migration, and uropod defects in SHARPIN-deficient lymphocytes were rescued by reintroducing SHARPIN into the cells. Mechanistically, we show that SHARPIN interacts directly with lymphocyte-function-associated antigen-1 (LFA-1), a leukocyte counterreceptor for ICAM-1, and inhibits the expression of intermediate and high-affinity forms of LFA-1. Thus, SHARPIN controls lymphocyte migration by endogenously maintaining LFA-1 inactive to allow adjustable detachment of the uropods in polarized cells.


Clinical Cancer Research | 2014

Clever-1/Stabilin-1 Controls Cancer Growth and Metastasis

Marika Karikoski; Fumiko Marttila-Ichihara; Kati Elima; Pia Rantakari; Maija Hollmén; Tiina Kelkka; Heidi Gerke; Ville Huovinen; Heikki Irjala; Rikard Holmdahl; Marko Salmi; Sirpa Jalkanen

Purpose: Immunosuppressive leukocytes and vasculature are important host cell components regulating tumor progression. Clever-1/Stabilin-1, a multifunctional scavenger and adhesion receptor, is constitutively present on a subset of type II macrophages and lymphatic endothelium, but its functional role in cancer is unknown. Experimental Design: Here, we generated full Clever-1 knockout mice and cell-specific ones lacking Clever-1 either on macrophages or endothelium. We also used anti-Clever-1 antibody therapy to treat B16 melanoma and EL-4 lymphoma. Results: Clever-1–deficient mice had smaller primary and metastatic tumors than wild-type (WT) controls. Growth of primary tumors, but not of metastases, was attenuated also in mice lacking Clever-1 selectively in macrophages or in vascular endothelium. Anti-Clever-1 antibody treatment inhibited tumor progression in WT mice. Both genetically and therapeutically induced absence of functional Clever-1 led to diminished numbers of immunosuppressive leukocyte types in tumors. Functionally Clever-1 mediated binding of immunosuppressive leukocytes to the intratumoral blood vessels aberrantly expressing Clever-1, and tumor cell traffic via the lymphatics. The antibody therapy did not aggravate autoimmunity. Conclusion: This work identifies Clever-1 in type II macrophages and in tumor vasculature as a new immunosuppressive molecule in cancer. Our finding that Clever-1 supports binding of tumor-infiltrating lymphocytes to tumor vasculature increases our understanding of leukocyte immigration to tumors. The ability of anti-Clever-1 antibody treatment to attenuate tumor progression in WT mice in vivo is therapeutically relevant. Thus, Clever-1 may be an emerging new target for modulating immune evasion and lymphatic spread in cancer. Clin Cancer Res; 20(24); 6452–64. ©2014 AACR.


Nature | 2016

Fetal liver endothelium regulates the seeding of tissue-resident macrophages

Pia Rantakari; Norma Jäppinen; Emmi Lokka; Elias Mokkala; Heidi Gerke; Emilia Peuhu; Johanna Ivaska; Kati Elima; Kaisa Auvinen; Marko Salmi

Macrophages are required for normal embryogenesis, tissue homeostasis and immunity against microorganisms and tumours. Adult tissue-resident macrophages largely originate from long-lived, self-renewing embryonic precursors and not from haematopoietic stem-cell activity in the bone marrow. Although fate-mapping studies have uncovered a great amount of detail on the origin and kinetics of fetal macrophage development in the yolk sac and liver, the molecules that govern the tissue-specific migration of these cells remain completely unknown. Here we show that an endothelium-specific molecule, plasmalemma vesicle-associated protein (PLVAP), regulates the seeding of fetal monocyte-derived macrophages to tissues in mice. We found that PLVAP-deficient mice have completely normal levels of both yolk-sac- and bone-marrow-derived macrophages, but that fetal liver monocyte-derived macrophage populations were practically missing from tissues. Adult PLVAP-deficient mice show major alterations in macrophage-dependent iron recycling and mammary branching morphogenesis. PLVAP forms diaphragms in the fenestrae of liver sinusoidal endothelium during embryogenesis, interacts with chemoattractants and adhesion molecules and regulates the egress of fetal liver monocytes to the systemic vasculature. Thus, PLVAP selectively controls the exit of macrophage precursors from the fetal liver and, to our knowledge, is the first molecule identified in any organ as regulating the migratory events during embryonic macrophage ontogeny.


Gut | 2016

Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption

Nicolas Calo; Pierluigi Ramadori; Cyril Sobolewski; Yannick Romero; Christine Maeder; Margot Fournier; Pia Rantakari; Fu-Ping Zhang; Matti Poutanen; Jean-François Dufour; Bostjan Humar; Serge Nef; Michelangelo Foti

Objective miR-21 is an oncomir highly upregulated in hepatocellular carcinoma and in early stages of liver diseases characterised by the presence of steatosis. Whether upregulation of miR-21 contributes to hepatic metabolic disorders and their progression towards cancer is unknown. This study aims at investigating the role of miR-21/miR-21* in early stages of metabolic liver disorders associated with diet-induced obesity (DIO). Design Constitutive miR-21/miR-21* knockout (miR21KO) and liver-specific miR-21/miR-21* knockout (LImiR21KO) mice were generated. Mice were then fed with high-fat diet (HFD) and alterations of the lipid and glucose metabolism were investigated. Serum and ex vivo explanted liver tissue were analysed. Results Under normal breeding conditions and standard diet, miR-21/miR-21* deletion in mice was not associated with any detectable phenotypic alterations. However, when mice were challenged with an obesogenic diet, glucose intolerance, steatosis and adiposity were improved in mice lacking miR-21/miR-21*. Deletion of miR-21/miR-21* specifically in hepatocytes led to similar improvements in mice fed an HFD, indicating a crucial role for hepatic miR-21/miR-21* in metabolic disorders associated with DIO. Further molecular analyses demonstrated that miR-21/miR-21* deletion in hepatocytes increases insulin sensitivity and modulates the expression of multiple key metabolic transcription factors involved in fatty acid uptake, de novo lipogenesis, gluconeogenesis and glucose output. Conclusions Hepatic miR-21/miR-21* deficiency prevents glucose intolerance and steatosis in mice fed an obesogenic diet by altering the expression of several master metabolic regulators. This study points out miR-21/miR-21* as a potential therapeutic target for non-alcoholic fatty liver disease and the metabolic syndrome.

Collaboration


Dive into the Pia Rantakari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge