Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piali Sengupta is active.

Publication


Featured researches published by Piali Sengupta.


Neuron | 2002

Regulation of body size and behavioral state of C. elegans by sensory perception and the egl-4 cGMP-dependent protein kinase

Manabi Fujiwara; Piali Sengupta; Steven L. McIntire

The growth and behavior of higher organisms depend on the accurate perception and integration of sensory stimuli by the nervous system. We show that defects in sensory perception in C. elegans result in abnormalities in the growth of the animal and in the expression of alternative behavioral states. Our analysis suggests that sensory neurons modulate neural or neuroendocrine functions, regulating both bodily growth and behavioral state. We identify genes likely to be required for these functions downstream of sensory inputs. Here, we characterize one of these genes as egl-4, which we show encodes a cGMP-dependent protein kinase. We demonstrate that this cGMP-dependent kinase functions in neurons of C. elegans to regulate multiple developmental and behavioral processes including the orchestrated growth of the animal and the expression of particular behavioral states.


Nature Cell Biology | 2008

elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8

Yoshihiro Omori; Chengtian Zhao; Arunesh Saras; Saikat Mukhopadhyay; Woong Kim; Takahisa Furukawa; Piali Sengupta; Alexey Veraksa; Jarema Malicki

The formation and function of cilia involves the movement of intraflagellar transport (IFT) particles underneath the ciliary membrane, along axonemal microtubules. Although this process has been studied extensively, its molecular basis remains incompletely understood. For example, it is unknown how the IFT particle interacts with transmembrane proteins. To study the IFT particle further, we examined elipsa, a locus characterized by mutations that cause particularly early ciliogenesis defects in zebrafish. We show here that elipsa encodes a coiled-coil polypeptide that localizes to cilia. Elipsa protein binds to Ift20, a component of IFT particles, and Elipsa homologue in Caenorhabditis elegans, DYF-11, translocates in sensory cilia, similarly to the IFT particle. This indicates that Elipsa is an IFT particle polypeptide. In the context of zebrafish embryogenesis, Elipsa interacts genetically with Rabaptin5, a well-studied regulator of endocytosis, which in turn interacts with Rab8, a small GTPase, known to localize to cilia. We show that Rabaptin5 binds to both Elipsa and Rab8, suggesting that these proteins provide a bridging mechanism between the IFT particle and protein complexes that assemble at the ciliary membrane.


The Journal of Neuroscience | 2006

The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans

Damon A. Clark; David Biron; Piali Sengupta; Aravinthan D. T. Samuel

The thermotactic behaviors of Caenorhabditis elegans indicate that its thermosensory system exhibits exquisite temperature sensitivity, long-term plasticity, and the ability to transform thermosensory input into different patterns of motor output. Here, we study the physiological role of the AFD thermosensory neurons by quantifying intracellular calcium dynamics in response to defined temperature stimuli. We demonstrate that short-term adaptation allows AFD to sense temperature changes as small as 0.05°C over temperature ranges as wide as 10°C. We show that a bidirectional thermosensory response (increasing temperature raises and decreasing temperature lowers the level of intracellular calcium in AFD) allows the AFD neurons to phase-lock their calcium dynamics to oscillatory thermosensory inputs. By analyzing the thermosensory response of AFD dendrites severed from their cell bodies by femtosecond laser ablation, we show that long-term plasticity is encoded as shifts in the operating range of a putative thermoreceptor(s) in the AFD sensory endings. Finally, we demonstrate that AFD activity is directly coupled to stimulation of its postsynaptic partner AIY. These observations indicate that many functions underlying thermotactic behavior are properties of one sensory neuronal type. Encoding multiple functions in individual sensory neurons may enable C. elegans to perform complex behaviors with simple neuronal circuits.


Science | 2009

Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans.

Kyuhyung Kim; Koji Sato; Mayumi Shibuya; Danna M. Zeiger; Rebecca A. Butcher; Justin R. Ragains; Jon Clardy; Kazushige Touhara; Piali Sengupta

Life Histories to Suit Nematode worms can profoundly manipulate their life histories in several ways. For example, Caenorhabditis elegans has two genders: males and hermaphrodites. Some clues for the evolution of this peculiar mating system have been revealed by Baldi et al. (p. 1002), who turned females of a related species, Caenorhabditis remanei, into hermaphrodites by modifying a gene involved in making sperm and another gene required for activating the spermatids. In most animals, the germ line is fully established during adulthood and a reproductive period is determined, at least in part, by aging of the germ line and the viability of oocytes. The reproductive longevity of hermaphrodite C. elegans can be increased at least 15-fold by starvation. Angelo and Van Gilst (p. 954, published online 27 August; see the Perspective by Ogawa and Sommer) found that in starved worms, the germline component of the reproductive system is actively killed, with the exception of a small set of preserved stem cells. When the worms are able to feed again, these cells regenerate into an entirely new and functional germ line. But this is not all. Kim et al. (p. 994, published online 1 October; see the Perspective by Ogawa and Sommer) show that subsets of the complex mixture of structurally related molecules in dauer pheromone act via distinct G protein–coupled receptors either to initiate longterm effects on development and physiology by modulating the neuroendocrine axis, or to trigger short-term acute effects on behavior by altering neuronal responses. Chemical signals that determine alternative nematode developmental programs act via two G protein–coupled receptors. Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)–coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.


Genes & Development | 2011

An ARL3–UNC119–RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium

Kevin J. Wright; Lisa M. Baye; Anique Olivier-Mason; Saikat Mukhopadhyay; Liyun Sang; Mandy Kwong; Weiru Wang; Pamela R. Pretorius; Val C. Sheffield; Piali Sengupta; Diane C. Slusarski; Peter K. Jackson

The membrane of the primary cilium is a highly specialized compartment that organizes proteins to achieve spatially ordered signaling. Disrupting ciliary organization leads to diseases called ciliopathies, with phenotypes ranging from retinal degeneration and cystic kidneys to neural tube defects. How proteins are selectively transported to and organized in the primary cilium remains unclear. Using a proteomic approach, we identified the ARL3 effector UNC119 as a binding partner of the myristoylated ciliopathy protein nephrocystin-3 (NPHP3). We mapped UNC119 binding to the N-terminal 200 residues of NPHP3 and found the interaction requires myristoylation. Creating directed mutants predicted from a structural model of the UNC119-myristate complex, we identified highly conserved phenylalanines within a hydrophobic β sandwich to be essential for myristate binding. Furthermore, we found that binding of ARL3-GTP serves to release myristoylated cargo from UNC119. Finally, we showed that ARL3, UNC119b (but not UNC119a), and the ARL3 GAP Retinitis Pigmentosa 2 (RP2) are required for NPHP3 ciliary targeting and that targeting requires UNC119b myristoyl-binding activity. Our results uncover a selective, membrane targeting GTPase cycle that delivers myristoylated proteins to the ciliary membrane and suggest that other myristoylated proteins may be similarly targeted to specialized membrane domains.


Developmental Cell | 2003

Otx/otd Homeobox Genes Specify Distinct Sensory Neuron Identities in C. elegans

Anne Lanjuin; Miri K. VanHoven; Cornelia I. Bargmann; Julia K. Thompson; Piali Sengupta

The mechanisms by which the diverse functional identities of neurons are generated are poorly understood. C. elegans responds to thermal and chemical stimuli using 12 types of sensory neurons. The Otx/otd homolog ttx-1 specifies the identities of the AFD thermosensory neurons. We show here that ceh-36 and ceh-37, the remaining two Otx-like genes in the C. elegans genome, specify the identities of AWC, ASE, and AWB chemosensory neurons, defining a role for this gene family in sensory neuron specification. All C. elegans Otx genes and rat Otx1 can substitute for ceh-37 and ceh-36, but only ceh-37 functionally substitutes for ttx-1. Functional substitution in the AWB neurons is mediated by activation of the same downstream target lim-4 by different Otx genes. Misexpression experiments indicate that although the specific identity adopted upon expression of an Otx gene may be constrained by the cellular context, individual Otx genes preferentially promote distinct neuronal identities.


Current Biology | 2004

Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types

Marc E. Colosimo; Adam Brown; Saikat Mukhopadhyay; Christopher V. Gabel; Anne Lanjuin; Aravinthan D. T. Samuel; Piali Sengupta

Most C. elegans sensory neuron types consist of a single bilateral pair of neurons, and respond to a unique set of sensory stimuli. Although genes required for the development and function of individual sensory neuron types have been identified in forward genetic screens, these approaches are unlikely to identify genes that when mutated result in subtle or pleiotropic phenotypes. Here, we describe a complementary approach to identify sensory neuron type-specific genes via microarray analysis using RNA from sorted AWB olfactory and AFD thermosensory neurons. The expression patterns of subsets of these genes were further verified in vivo. Genes identified by this analysis encode 7-transmembrane receptors, kinases, and nuclear factors including dac-1, which encodes a homolog of the highly conserved Dachshund protein. dac-1 is expressed in a subset of sensory neurons including the AFD neurons and is regulated by the TTX-1 OTX homeodomain protein. On thermal gradients, dac-1 mutants fail to suppress a cryophilic drive but continue to track isotherms at the cultivation temperature, representing the first genetic separation of these AFD-mediated behaviors. Expression profiling of single neuron types provides a rapid, powerful, and unbiased method for identifying neuron-specific genes whose functions can then be investigated in vivo.


Neuron | 2001

Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx

John Satterlee; Hiroyuki Sasakura; Atsushi Kuhara; Maura Berkeley; Ikue Mori; Piali Sengupta

Temperature is a critical modulator of animal metabolism and behavior, yet the mechanisms underlying the development and function of thermosensory neurons are poorly understood. C. elegans senses temperature using the AFD thermosensory neurons. Mutations in the gene ttx-1 affect AFD neuron function. Here, we show that ttx-1 regulates all differentiated characteristics of the AFD neurons. ttx-1 mutants are defective in a thermotactic behavior and exhibit deregulated thermosensory inputs into a neuroendocrine signaling pathway. ttx-1 encodes a member of the conserved OTD/OTX homeodomain protein family and is expressed in the AFD neurons. Misexpression of ttx-1 converts other sensory neurons to an AFD-like fate. Our results extend a previously noted conservation of developmental mechanisms between the thermosensory circuit in C. elegans and the vertebrate photosensory circuit, suggesting an evolutionary link between thermosensation and phototransduction.


Genetics | 2005

Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans

Hitoshi Inada; Hiroko Ito; John Satterlee; Piali Sengupta; Kunihiro Matsumoto; Ikue Mori

The nematode Caenorhabditis elegans senses temperature primarily via the AFD thermosensory neurons in the head. The response to temperature can be observed as a behavior called thermotaxis on thermal gradients. It has been shown that a cyclic nucleotide-gated ion channel (CNG channel) plays a critical role in thermosensation in AFD. To further identify the thermosensory mechanisms in AFD, we attempted to identify components that function upstream of the CNG channel by a reverse genetic approach. Genetic and behavioral analyses showed that three members of a subfamily of gcy genes (gcy-8, gcy-18, and gcy-23) encoding guanylyl cyclases were essential for thermotaxis in C. elegans. Promoters of each gene drove reporter gene expression exclusively in the AFD neurons and, moreover, tagged proteins were localized to the sensory endings of AFD. Single mutants of each gcy gene showed almost normal thermotaxis. However, animals carrying double and triple mutations in these genes showed defective thermotaxis behavior. The abnormal phenotype of the gcy triple mutants was rescued by expression of any one of the three GCY proteins in the AFD neurons. These results suggest that three guanylyl cyclases function redundantly in the AFD neurons to mediate thermosensation by C. elegans.


Genes & Development | 2010

Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila

Paul A. Garrity; Miriam B. Goodman; Aravinthan D. T. Samuel; Piali Sengupta

Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior.

Collaboration


Dive into the Piali Sengupta's collaboration.

Top Co-Authors

Avatar

Kyuhyung Kim

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saikat Mukhopadhyay

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelia I. Bargmann

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge