Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pier Luigi Buttigieg is active.

Publication


Featured researches published by Pier Luigi Buttigieg.


Journal of Biomedical Semantics | 2013

The environment ontology: contextualising biological and biomedical entities

Pier Luigi Buttigieg; Norman Morrison; Barry Smith; Christopher J. Mungall; Suzanna E. Lewis

As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO; http://www.environmentontology.org) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, content, structure, adoption, and governance approach. The ontology is available from http://purl.obolibrary.org/obo/envo.owl - an OBO format version is also available by switching the file suffix to “obo”.


FEMS Microbiology Ecology | 2014

A guide to statistical analysis in microbial ecology: a community‐focused, living review of multivariate data analyses

Pier Luigi Buttigieg; Alban Ramette

The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community.


PLOS ONE | 2014

Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

Ramona L. Walls; John Deck; Robert P. Guralnick; Steve Baskauf; Reed S. Beaman; Stanley Blum; Shawn Bowers; Pier Luigi Buttigieg; Neil Davies; Dag Terje Filip Endresen; Maria A. Gandolfo; Robert Hanner; Alyssa Janning; Leonard Krishtalka; Andréa M. Matsunaga; Peter E. Midford; Norman Morrison; Éamonn Ó Tuama; Mark Schildhauer; Barry Smith; Brian J. Stucky; Andrea K. Thomer; John Wieczorek; Jamie Whitacre; John Wooley

The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.


Journal of Biomedical Semantics | 2014

BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

Toshiaki Katayama; Mark D. Wilkinson; Kiyoko F. Aoki-Kinoshita; Shuichi Kawashima; Yasunori Yamamoto; Atsuko Yamaguchi; Shinobu Okamoto; Shin Kawano; Jin Dong Kim; Yue Wang; Hongyan Wu; Yoshinobu Kano; Hiromasa Ono; Hidemasa Bono; Simon Kocbek; Jan Aerts; Yukie Akune; Erick Antezana; Kazuharu Arakawa; Bruno Aranda; Joachim Baran; Jerven T. Bolleman; Raoul J. P. Bonnal; Pier Luigi Buttigieg; Matthew Campbell; Yi An Chen; Hirokazu Chiba; Peter J. A. Cock; K. Bretonnel Cohen; Alexandru Constantin

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.


Nucleic Acids Research | 2010

Megx.net: integrated database resource for marine ecological genomics

Renzo Kottmann; Ivalyo Kostadinov; Melissa B. Duhaime; Pier Luigi Buttigieg; Pelin Yilmaz; Wolfgang Hankeln; Jost Waldmann; Frank Oliver Glöckner

Megx.net is a database and portal that provides integrated access to georeferenced marker genes, environment data and marine genome and metagenome projects for microbial ecological genomics. All data are stored in the Microbial Ecological Genomics DataBase (MegDB), which is subdivided to hold both sequence and habitat data and global environmental data layers. The extended system provides access to several hundreds of genomes and metagenomes from prokaryotes and phages, as well as over a million small and large subunit ribosomal RNA sequences. With the refined Genes Mapserver, all data can be interactively visualized on a world map and statistics describing environmental parameters can be calculated. Sequence entries have been curated to comply with the proposed minimal standards for genomes and metagenomes (MIGS/MIMS) of the Genomic Standards Consortium. Access to data is facilitated by Web Services. The updated megx.net portal offers microbial ecologists greatly enhanced database content, and new features and tools for data analysis, all of which are freely accessible from our webpage http://www.megx.net.


Journal of Biomedical Semantics | 2016

The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation.

Pier Luigi Buttigieg; Evangelos Pafilis; Suzanna E. Lewis; Mark Schildhauer; Ramona L. Walls; Christopher J. Mungall

BackgroundThe Environment Ontology (ENVO; http://www.environmentontology.org/), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontologys initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVOs use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications.MethodsWe have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO.ResultsRelative to its state in 2013, ENVOs content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl.ConclusionsENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, ‘omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO’s growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.


Standards in Genomic Sciences | 2013

Clarifying Concepts and Terms in Biodiversity Informatics

John Deck; Katharine Barker; Reed S. Beaman; Pier Luigi Buttigieg; Gabriele Dröge; Robert P. Guralnick; Chuck Miller; Éamonn Ó Tuama; Zack E. Murrell; Cynthia Sims Parr; Bob Robbins; Dmitry Schigel; Brian J. Stucky; Ramona L. Walls; John Wieczorek; Norman Morrison; John Wooley

“If names be not correct, language is not in accordance with the truth of things. If language be not in accordance with the truth of things, affairs cannot be carried on to success.” - Confucius, Analects, Book XIII, Chapter 3, verses 4-7, translated by James Legge Two workshops (hereafter described as “workshops”) were held in 2012, which brought together domain experts from genomic and biodiversity informatics, information modeling and biology, to clarify concepts and terms at the intersection of these domains. These workshops grew out of efforts sponsored by the NSF funded Resource Coordination Network (RCN) project for GSC [1] (RCN4GSC, hosted at UCSD, with John Wooley as PI) to reconcile terms from the Darwin Core (DwC) [2] vocabulary and with those in the MIxS family of checklists (Minimum Information about Any Type of Sequence) [3]. The original RCN4GSC meetings were able to align many terms between DwC and MIxS, finding both common and complementary terms. However, deciding exactly what constitutes the concept of a sample, a specimen, and an occurrence [4] to satisfy the needs of all use cases proved difficult, especially given the wide variety of sampling strategies employed within and between communities. Further, participants in the initial RCN4GSC workshops needed additional guidance on how to relate these entities to processes that act upon them and the environments in which organisms live. These issues provided the motivation for the workshops described below. The two workshops drew largely from experiences of the Basic Formal Ontology (BFO) [5] and were led by Barry Smith, State University of New York at Buffalo. We chose to interact with Smith based on his successful interactions with the GSC in developing the Environment Ontology (EnvO) [6] and also, on the ability of BFO to unite previously disconnected ontologies in the medical domain [7]. The first workshop addressed term definitions in biodiversity informatics, working within the BFO framework, while the second workshop developed a prototype Bio-Collections Ontology, dealing with samples and processes acting on samples. Concurrent with these workshops were two ongoing efforts involving data acquisition, visualization, and analysis that rely on a solid conceptual understanding of samples, specimens, and occurrences. These implementations are included in this report to show practical applications of term clarification. Finally, this report provides a discussion of some of the next steps discussed during the workshops.


Database | 2016

EXTRACT: interactive extraction of environment metadata and term suggestion for metagenomic sample annotation.

Evangelos Pafilis; Pier Luigi Buttigieg; Barbra Ferrell; Emiliano Pereira; Julia Schnetzer; Christos Arvanitidis; Lars Juhl Jensen

The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have therefore developed an interactive annotation tool, EXTRACT, which helps curators identify and extract standard-compliant terms for annotation of metagenomic records and other samples. Behind its web-based user interface, the system combines published methods for named entity recognition of environment, organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15–25% and helps curators to detect terms that would otherwise have been missed. Database URL: https://extract.hcmr.gr/


Frontiers in Microbiology | 2015

Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait)

Pier Luigi Buttigieg; Alban Ramette

Marine bacteria colonizing deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometers and across water depths of several thousand meters (Jacob et al., 2013). Jacob et al. (2013) adopted what has become a classical view of microbial diversity – based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene – and observed a very large microbial community replacement at the HAUSGARTEN Long Term Ecological Research station (Eastern Fram Strait). Here, we revisited these data using the oligotyping approach and aimed to obtain new insight into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments. We also assessed the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterized dataset of high relevance for global change biology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples

Lars Wörmer; Marcus Elvert; Jens Fuchser; Julius S. Lipp; Pier Luigi Buttigieg; Matthias Zabel; Kai-Uwe Hinrichs

Significance Lipid biomarkers in geological samples are important informants regarding past environments and ecosystems. Conventional biomarker analysis is labor intensive and requires relatively large sediment or rock samples; temporal resolution is consequently low. Here, we present an approach that has the potential to revolutionize paleoenvironmental biomarker research; it avoids wet-chemical sample preparation and enables analysis of biomarkers directly on sediment cores at submillimeter spatial resolution. Our initial application to a sediment core deposited during the Holocene climate optimum in the Mediterranean Sea reveals a new view of how small-scale variations in lipid distribution are integrated into commonly reported signals obtained by conventional analysis and demonstrates a strong influence of the ∼200-y de Vries solar cycle on sea-surface temperatures and planktonic archaeal ecology. Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. This concept is the basis of numerous molecular proxies used for paleoenvironmental reconstruction. Archaeal tetraether lipids from ubiquitous marine planktonic archaea are particularly abundant, well preserved in the sedimentary record and used in several molecular proxies. We here introduce the direct, extraction-free analysis of these compounds in intact sediment core sections using laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LDI FTICR-MS can detect the target lipids in single submillimeter-sized spots on sediment sections, equivalent to a sample mass in the nanogram range, and could thus pave the way for biomarker-based reconstruction of past environments and ecosystems at subannual to decadal resolution. We demonstrate that ratios of selected archaeal tetraethers acquired by LDI FTICR-MS are highly correlated with values obtained by conventional liquid chromatography/MS protocols. The ratio of the major archaeal lipids, caldarchaeol and crenarchaeol, analyzed in a 6.2-cm intact section of Mediterranean sapropel S1 at 250-µm resolution (∼4-y temporal resolution), provides an unprecedented view of the fine-scale patchiness of sedimentary biomarker distributions and the processes involved in proxy signal formation. Temporal variations of this lipid ratio indicate a strong influence of the ∼200-y de Vries solar cycle on reconstructed sea surface temperatures with possible amplitudes of several degrees, and suggest signal amplification by a complex interplay of ecological and environmental factors. Laser-based biomarker analysis of geological samples has the potential to revolutionize molecular stratigraphic studies of paleoenvironments.

Collaboration


Dive into the Pier Luigi Buttigieg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Mungall

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Deck

University of California

View shared research outputs
Top Co-Authors

Avatar

Neil Davies

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge