Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pier Luigi Vidale is active.

Publication


Featured researches published by Pier Luigi Vidale.


Nature | 2004

The role of increasing temperature variability in European summer heatwaves.

Christoph Schär; Pier Luigi Vidale; Daniel Lüthi; Christoph Frei; Christian Häberli; Mark A. Liniger; Christof Appenzeller

Instrumental observations and reconstructions of global and hemispheric temperature evolution reveal a pronounced warming during the past ∼150 years. One expression of this warming is the observed increase in the occurrence of heatwaves. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.


Journal of Applied Meteorology | 2000

Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling

Robert L. Walko; Lawrence E. Band; Jill S. Baron; Timothy G. F. Kittel; Richard B. Lammers; T. J. Lee; Dennis Ojima; Roger A. Pielke; Christopher M. Taylor; Christina L. Tague; Craig J. Tremback; Pier Luigi Vidale

The formulation and implementation of LEAF-2, the Land Ecosystem‐Atmosphere Feedback model, which comprises the representation of land‐surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere‐biophysical‐ hydrologic response to altered climate forcing at local watershed and regional basin scales.


Journal of Climate | 2007

Soil Moisture-Atmosphere Interactions during the 2003 European Summer Heat Wave

Erich M. Fischer; Sonia I. Seneviratne; Pier Luigi Vidale; Daniel Lüthi; Christoph Schär

The role of land surface–related processes and feedbacks during the record-breaking 2003 European summer heat wave is explored with a regional climate model. All simulations are driven by lateral boundary conditions and sea surface temperatures from the ECMWF operational analysis and 40-yr ECMWF ReAnalysis (ERA-40), thereby prescribing the large-scale circulation. In particular, the contribution of soil moisture anomalies and their interactions with the atmosphere through latent and sensible heat fluxes is investigated. Sensitivity experiments are performed by perturbing spring soil moisture in order to determine its influence on the formation of the heat wave. A multiyear regional climate simulation for 1970–2000 using a fixed model setup is used as the reference period. A large precipitation deficit together with early vegetation green-up and strong positive radiative anomalies in the months preceding the extreme summer event contributed to an early and rapid loss of soil moisture, which exceeded the multiyear average by far. The exceptionally high temperature anomalies, most pronounced in June and August 2003, were initiated by persistent anticyclonic circulation anomalies that enabled a dominance of the local heat balance. In this experiment the hottest phase in early August is realistically simulated despite the absence of an anomaly in total surface net radiation. This indicates an important role of the partitioning of net radiation in latent and sensible heat fluxes, which is to a large extent controlled by soil moisture. The lack of soil moisture strongly reduced latent cooling and thereby amplified the surface temperature anomalies. The evaluation of the experiments with perturbed spring soil moisture shows that this quantity is an important parameter for the evolution of European heat waves. Simulations indicate that without soil moisture anomalies the summer heat anomalies could have been reduced by around 40% in some regions. Moreover, drought conditions are revealed to influence the tropospheric circulation by producing a surface heat low and enhanced ridging in the midtroposphere. This suggests a positive feedback mechanism between soil moisture, continental-scale circulation, and temperature.


International Journal of Remote Sensing | 2004

European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset

Reto Stockli; Pier Luigi Vidale

Vegetation distribution and state have been measured since 1981 by the AVHRR (Advanced Very High Resolution Radiometer) instrument through satellite remote sensing. In this study a correction method is applied to the Pathfinder NDVI (Normalized Difference Vegetation Index) data to create a continuous European vegetation phenology dataset of a 10-day temporal and 0.1° spatial resolution; additionally, land surface parameters for use in biosphere–atmosphere modelling are derived. The analysis of time-series from this dataset reveals, for the years 1982–2001, strong seasonal and interannual variability in European land surface vegetation state. Phenological metrics indicate a late and short growing season for the years 1985–1987, in addition to early and prolonged activity in the years 1989, 1990, 1994 and 1995. These variations are in close agreement with findings from phenological measurements at the surface; spring phenology is also shown to correlate particularly well with anomalies in winter temperature and winter North Atlantic Oscillation (NAO) index. Nevertheless, phenological metrics, which display considerable regional differences, could only be determined for vegetation with a seasonal behaviour. Trends in the phenological phases reveal a general shift to earlier (−0.54 days year−1) and prolonged (0.96 days year−1) growing periods which are statistically significant, especially for central Europe.


Journal of Climate | 2009

U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation

Leonard Christopher Shaffrey; I. Stevens; Warwick Norton; Malcolm J. Roberts; Pier Luigi Vidale; J. Harle; A. Jrrar; David P. Stevens; Margaret J. Woodage; Marie-Estelle Demory; John Donners; D. B. Clark; A. Clayton; Jeffrey William Cole; Simon Wilson; W. M. Connolley; T. M. Davies; Alan Iwi; T. C. Johns; J. C. King; Adrian L. New; Julia Slingo; A. Slingo; Lois Steenman-Clark; Gill Martin

Abstract This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the S...


Monthly Weather Review | 1999

The influence of anthropogenic landscape changes on weather in south Florida

Roger A. Pielke; Robert L. Walko; Louis T. Steyaert; Pier Luigi Vidale; Glen E. Liston; Walter A. Lyons; Thomas N. Chase

Using identical observed meteorology for lateral boundary conditions, the Regional Atmospheric Modeling System was integrated for July‐August 1973 for south Florida. Three experiments were performed—one using the observed 1973 landscape, another the 1993 landscape, and the third the 1900 landscape, when the region was close to its natural state. Over the 2-month period, there was a 9% decrease in rainfall averaged over south Florida with the 1973 landscape and an 11% decrease with the 1993 landscape, as compared with the model results when the 1900 landscape is used. The limited available observations of trends in summer rainfall over this region are consistent with these trends.


Journal of Geophysical Research | 1995

The boreal forest and the polar front

Roger A. Pielke; Pier Luigi Vidale

The analysis presented in this paper suggests that the larger heating over the boreal forest in the spring and summer, as contrasted with weaker heating over the adjacent tundra, results in a preferred position of the polar front along the northern edge of the boreal forest. This positioning is well documented in the literature (see, for example, Bryson, 1966; Barry and Hare, 1974; Kreps and Barry, 1970). This heating results from the lower albedo of the boreal forest which is not compensated by an increase in transpiration, even with the larger leaf area index of the forest. The warmer temperatures are mixed upward by the deep boundary layer over the forest and mesoscale circulations which result from the patchiness of heating associated with the heterogeneous landscapes of the forest. Thus in contrast to previous assumptions in which the arctic front position in the summer determines the northern limit of the boreal tree line, our study suggests the boreal forest itself significantly influences the preferred position of the front. This conclusion reinforces the findings of Bonan et al. (1992) and Foley et al. (1994) on the important role of boreal forest-tundra interactions with climate.


Journal of Climate | 2013

Investigating Global Tropical Cyclone Activity with a Hierarchy of AGCMs: The Role of Model Resolution

Jane Strachan; Pier Luigi Vidale; Kevin I. Hodges; Malcolm J. Roberts; Marie-Estelle Demory

AbstractThe ability to run general circulation models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model version 1 (HadGEM1) with horizontal resolution increasing from approximately 270 to 60 km at 50°N, is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135 km or higher, particularly for Northern Hemisphere basins....


Geophysical Research Letters | 2014

Changes in global net radiative imbalance 1985–2012

Richard P. Allan; Chunlei Liu; Norman Loeb; Matthew D. Palmer; Malcolm J. Roberts; Doug Smith; Pier Luigi Vidale

Combining satellite data, atmospheric reanalyses, and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earths atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985–1999 period mean N (0.34 ± 0.67 Wm−2) is lower than for the 2000–2012 period (0.62 ± 0.43 Wm−2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mount Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of nine climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r∼0.6) over the 1985–2012 period.


Bulletin of the American Meteorological Society | 2015

Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes

Kevin Walsh; Suzana J. Camargo; Gabriel A. Vecchi; Anne Sophie Daloz; James B. Elsner; Kerry A. Emanuel; Michael Horn; Young-Kwon Lim; Malcolm J. Roberts; Christina M. Patricola; Enrico Scoccimarro; Adam H. Sobel; Sarah Strazzo; Gabriele Villarini; Michael Wehner; Ming Zhao; James P. Kossin; Tim LaRow; Kazuyoshi Oouchi; Siegfried D. Schubert; Hui Wang; Julio T. Bacmeister; Ping Chang; Fabrice Chauvin; Christiane Jablonowski; Arun Kumar; Hiroyuki Murakami; Tomoaki Ose; Kevin A. Reed; R. Saravanan

AbstractWhile a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences...

Collaboration


Dive into the Pier Luigi Vidale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger A. Pielke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge