Pierandrea Muglia
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierandrea Muglia.
Nature | 2008
Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann
Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
Nature | 2009
Hreinn Stefansson; Roel A. Ophoff; Stacy Steinberg; Ole A. Andreassen; Sven Cichon; Dan Rujescu; Thomas Werge; Olli Pietiläinen; Ole Mors; Preben Bo Mortensen; Engilbert Sigurdsson; Omar Gustafsson; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Anders D. Børglum; Annette M. Hartmann; Anders Fink-Jensen; Merete Nordentoft; David M. Hougaard; Bent Nørgaard-Pedersen; Yvonne Böttcher; Jes Olesen; René Breuer; Hans-Jürgen Möller; Ina Giegling
Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
American Journal of Human Genetics | 2002
Maria Neves-Pereira; Emanuela Mundo; Pierandrea Muglia; Nicole King; Fabio Macciardi; James L. Kennedy
Bipolar disorder (BP) is a severe psychiatric disease, with a strong genetic component, that affects 1% of the population worldwide and is characterized by recurrent episodes of mania and depression. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of mood disorders, and the aim of the present study was to test for the presence of linkage disequilibrium between two polymorphisms in the BDNF gene and BP in 283 nuclear families. Family-based association test (FBAT) results for the dinucleotide repeat (GT)(N) polymorphism at position -1040 bp showed that allele A3 was preferentially transmitted to the affected individuals (Z=2.035 and P=.042). FBAT results for the val66met SNP showed a significant association for allele G (Z=3.415 and P=.00064). Transmission/disequilibrium test (TDT) haplotype analysis showed a significant result for the 3-G allele combination (P=.000394), suggesting that a DNA variant in the vicinity of the BDNF locus confers susceptibility to BP. Given that there is no direct evidence that either of the polymorphisms we examined alters function, it is unlikely that the actual risk-conferring allele is from these two sites. Rather, the causative site is likely nearby and in linkage disequilibrium with the 3-G haplotype that we have identified.
PLOS Genetics | 2009
Anna C. Need; Dongliang Ge; Michael E. Weale; Jessica M. Maia; Sheng Feng; Erin L. Heinzen; Woohyun Yoon; Dalia Kasperavičiūtė; Massimo Gennarelli; Warren J. Strittmatter; Cristian Bonvicini; Giuseppe Rossi; Karu Jayathilake; Philip A. Cola; Joseph P. McEvoy; Richard S.E. Keefe; Elizabeth M. C. Fisher; Pamela L. St. Jean; Ina Giegling; Annette M. Hartmann; Hans-Jürgen Möller; Andreas Ruppert; Gillian M. Fraser; Caroline Crombie; Lefkos T. Middleton; David St Clair; Allen D. Roses; Pierandrea Muglia; Clyde Francks; Dan Rujescu
We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens.
Molecular Psychiatry | 2008
Wade H. Berrettini; X. Yuan; Federica Tozzi; K. Song; Clyde Francks; H. Chilcoat; D. Waterworth; Pierandrea Muglia; V. Mooser
Twin studies indicate that additive genetic effects explain most of the variance in nicotine dependence (ND), a construct emphasizing habitual heavy smoking despite adverse consequences, tolerance and withdrawal. To detect ND alleles, we assessed cigarettes per day (CPD) regularly smoked, in two European populations via whole genome association techniques. In these ∼7500 persons, a common haplotype in the CHRNA3–CHRNA5 nicotinic receptor subunit gene cluster was associated with CPD (nominal P=6.9 × 10−5). In a third set of European populations (n=∼7500) which had been genotyped for ∼6000 SNPs in ∼2000 genes, an allele in the same haplotype was associated with CPD (nominal P=2.6 × 10−6). These results (in three independent populations of European origin, totaling ∼15 000 individuals) suggest that a common haplotype in the CHRNA5/CHRNA3 gene cluster on chromosome 15 contains alleles, which predispose to ND.
Nature Genetics | 2010
Verneri Anttila; Hreinn Stefansson; Mikko Kallela; Unda Todt; Gisela M. Terwindt; M. S. Calafato; Dale R. Nyholt; Antigone S. Dimas; Tobias Freilinger; Bertram Müller-Myhsok; Ville Artto; Michael Inouye; Kirsi Alakurtti; Mari A. Kaunisto; Eija Hämäläinen; B.B.A. de Vries; Anine H. Stam; Claudia M. Weller; A. Heinze; K. Heinze-Kuhn; Ingrid Goebel; Guntram Borck; Hartmut Göbel; Stacy Steinberg; Christiane Wolf; Asgeir Björnsson; Gudmundur Gudmundsson; M. Kirchmann; A. Hauge; Thomas Werge
Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10−9, odds ratio = 1.23, 95% CI 1.150–1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10−11 (odds ratio = 1.18, 95% CI 1.127–1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10−5, permuted threshold for genome-wide significance 7.7 × 10−5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine.
Molecular Psychiatry | 2007
Clyde Francks; S. Maegawa; Juha Laurén; Brett S. Abrahams; Antonio Velayos-Baeza; Sarah E. Medland; S. Colella; Matthias Groszer; E. Z. McAuley; Tara M. Caffrey; T. Timmusk; P. Pruunsild; I. Koppel; Penelope A. Lind; N. Matsumoto-Itaba; Jérôme Nicod; Lan Xiong; Ridha Joober; Wolfgang Enard; B. Krinsky; E. Nanba; Alex J. Richardson; Brien P. Riley; Nicholas G. Martin; Stephen M. Strittmatter; H.-J. Möller; Dan Rujescu; D. St Clair; Pierandrea Muglia; J. L. Roos
Left–right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.
Nature Genetics | 2009
Michael A. van Es; Jan H. Veldink; Christiaan G.J. Saris; Hylke M. Blauw; Paul W.J. van Vught; Anna Birve; Robin Lemmens; Helenius J. Schelhaas; Ewout J.N. Groen; Mark H. B. Huisman; Anneke J. van der Kooi; Marianne de Visser; Caroline Dahlberg; Karol Estrada; Fernando Rivadeneira; Albert Hofman; Machiel J. Zwarts; Perry T.C. van Doormaal; Dan Rujescu; Eric Strengman; Ina Giegling; Pierandrea Muglia; Barbara Tomik; Agnieszka Slowik; André G. Uitterlinden; Corinna Hendrich; Stefan Waibel; Thomas Meyer; Albert C. Ludolph; Jonathan D. Glass
We conducted a genome-wide association study among 2,323 individuals with sporadic amyotrophic lateral sclerosis (ALS) and 9,013 control subjects and evaluated all SNPs with P < 1.0 × 10−4 in a second, independent cohort of 2,532 affected individuals and 5,940 controls. Analysis of the genome-wide data revealed genome-wide significance for one SNP, rs12608932, with P = 1.30 × 10−9. This SNP showed robust replication in the second cohort (P = 1.86 × 10−6), and a combined analysis over the two stages yielded P = 2.53 × 10−14. The rs12608932 SNP is located at 19p13.3 and maps to a haplotype block within the boundaries of UNC13A, which regulates the release of neurotransmitters such as glutamate at neuromuscular synapses. Follow-up of additional SNPs showed genome-wide significance for two further SNPs (rs2814707, with P = 7.45 × 10−9, and rs3849942, with P = 1.01 × 10−8) in the combined analysis of both stages. These SNPs are located at chromosome 9p21.2, in a linkage region for familial ALS with frontotemporal dementia found previously in several large pedigrees.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Laura J. Scott; Pierandrea Muglia; Xiangyang Q. Kong; Weihua Guan; Matthew Flickinger; Ruchi Upmanyu; Federica Tozzi; Jun Li; Margit Burmeister; Devin Absher; Robert C. Thompson; Clyde Francks; Fan Meng; Athos Antoniades; Audrey Southwick; Alan F. Schatzberg; William E. Bunney; Jack D. Barchas; Edward G. Jones; Richard K. Day; Keith Matthews; P. McGuffin; John S. Strauss; James L. Kennedy; Lefkos T. Middleton; Allen D. Roses; Stanley J. Watson; John B. Vincent; Richard M. Myers; A. Farmer
Bipolar disorder (BP) is a disabling and often life-threatening disorder that affects ≈1% of the population worldwide. To identify genetic variants that increase the risk of BP, we genotyped on the Illumina HumanHap550 Beadchip 2,076 bipolar cases and 1,676 controls of European ancestry from the National Institute of Mental Health Human Genetics Initiative Repository, and the Prechter Repository and samples collected in London, Toronto, and Dundee. We imputed SNP genotypes and tested for SNP-BP association in each sample and then performed meta-analysis across samples. The strongest association P value for this 2-study meta-analysis was 2.4 × 10−6. We next imputed SNP genotypes and tested for SNP-BP association based on the publicly available Affymetrix 500K genotype data from the Wellcome Trust Case Control Consortium for 1,868 BP cases and a reference set of 12,831 individuals. A 3-study meta-analysis of 3,683 nonoverlapping cases and 14,507 extended controls on >2.3 M genotyped and imputed SNPs resulted in 3 chromosomal regions with association P ≈ 10−7: 1p31.1 (no known genes), 3p21 (>25 known genes), and 5q15 (MCTP1). The most strongly associated nonsynonymous SNP rs1042779 (OR = 1.19, P = 1.8 × 10−7) is in the ITIH1 gene on chromosome 3, with other strongly associated nonsynonymous SNPs in GNL3, NEK4, and ITIH3. Thus, these chromosomal regions harbor genes implicated in cell cycle, neurogenesis, neuroplasticity, and neurosignaling. In addition, we replicated the reported ANK3 association results for SNP rs10994336 in the nonoverlapping GSK sample (OR = 1.37, P = 0.042). Although these results are promising, analysis of additional samples will be required to confirm that variant(s) in these regions influence BP risk.
PLOS ONE | 2010
Enrico Domenici; David R Wille; Federica Tozzi; Inga Prokopenko; Sam Miller; Astrid McKeown; Claire Brittain; Dan Rujescu; Ina Giegling; Christoph W. Turck; Florian Holsboer; Edward T. Bullmore; Lefkos T. Middleton; Emilio Merlo-Pich; Robert Alexander; Pierandrea Muglia
Despite significant research efforts aimed at understanding the neurobiological underpinnings of psychiatric disorders, the diagnosis and the evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms. Therefore, biological markers which could improve the current classification of psychiatry disorders, and in perspective stratify patients on a biological basis into more homogeneous clinically distinct subgroups, are highly needed. In order to identify novel candidate biological markers for major depression and schizophrenia, we have applied a focused proteomic approach using plasma samples from a large case-control collection. Patients were diagnosed according to DSM criteria using structured interviews and a number of additional clinical variables and demographic information were assessed. Plasma samples from 245 depressed patients, 229 schizophrenic patients and 254 controls were submitted to multi analyte profiling allowing the evaluation of up to 79 proteins, including a series of cytokines, chemokines and neurotrophins previously suggested to be involved in the pathophysiology of depression and schizophrenia. Univariate data analysis showed more significant p-values than would be expected by chance and highlighted several proteins belonging to pathways or mechanisms previously suspected to be involved in the pathophysiology of major depression or schizophrenia, such as insulin and MMP-9 for depression, and BDNF, EGF and a number of chemokines for schizophrenia. Multivariate analysis was carried out to improve the differentiation of cases from controls and identify the most informative panel of markers. The results illustrate the potential of plasma biomarker profiling for psychiatric disorders, when conducted in large collections. The study highlighted a set of analytes as candidate biomarker signatures for depression and schizophrenia, warranting further investigation in independent collections.