Pierdavide Coïsson
Institut de Physique du Globe de Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierdavide Coïsson.
Earth, Planets and Space | 2015
Erwan Thébault; Christopher C. Finlay; Ciaran Beggan; Patrick Alken; Julien Aubert; Olivier Barrois; F. Bertrand; T. N. Bondar; Axel Boness; Laura Brocco; Elisabeth Canet; Aude Chambodut; Arnaud Chulliat; Pierdavide Coïsson; François Civet; Aimin Du; Alexandre Fournier; Isabelle Fratter; N. Gillet; Brian Hamilton; Mohamed Hamoudi; Gauthier Hulot; Thomas Jager; Monika Korte; Weijia Kuang; Xavier Lalanne; Benoit Langlais; Jean-Michel Leger; Vincent Lesur; F. J. Lowes
The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic field.
Earth and Space Science | 2015
Pierdavide Coïsson; Philippe Lognonné; Damian Walwer; Lucie M. Rolland
After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing the vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.
Earth, Planets and Space | 2015
Pierre Vigneron; Gauthier Hulot; Nils Olsen; Jean-Michel Leger; Thomas Jager; Laura Brocco; Olivier Sirol; Pierdavide Coïsson; Xavier Lalanne; Arnaud Chulliat; François Bertrand; Axel Boness; Isabelle Fratter
Each of the three satellites of the European Space Agency Swarm mission carries an absolute scalar magnetometer (ASM) that provides the nominal 1-Hz scalar data of the mission for both science and calibration purposes. These ASM instruments, however, also deliver autonomous 1-Hz experimental vector data. Here, we report on how ASM-only scalar and vector data from the Alpha and Bravo satellites between November 29, 2013 (a week after launch) and September 25, 2014 (for on-time delivery of the model on October 1, 2014) could be used to build a very valuable candidate model for the 2015.0 International Geomagnetic Reference Field (IGRF). A parent model was first computed, describing the geomagnetic field of internal origin up to degree and order 40 in a spherical harmonic representation and including a constant secular variation up to degree and order 8. This model was next simply forwarded to epoch 2015.0 and truncated at degree and order 13. The resulting ASM-only 2015.0 IGRF candidate model is compared to analogous models derived from the mission’s nominal data and to the now-published final 2015.0 IGRF model. Differences among models mainly highlight uncertainties enhanced by the limited geographical distribution of the selected data set (essentially due to a lack of availability of data at high northern latitude satisfying nighttime conditions at the end of the time period considered). These appear to be comparable to differences classically observed among IGRF candidate models. These positive results led the ASM-only 2015.0 IGRF candidate model to contribute to the construction of the final 2015.0 IGRF model.
Journal of Geophysical Research | 2018
Virgile Rakoto; Philippe Lognonné; Lucie Rolland; Pierdavide Coïsson
Large underwater earthquakes (Mw>7) can transmit part of their energy to the surrounding ocean through large seafloor motions, generating tsunamis that propagate over long distances. The forcing effect of tsunami waves on the atmosphere generates internal gravity waves that, when they reach the upper atmosphere, produce ionospheric perturbations. These perturbations are frequently observed in the total electron content (TEC) measured by multifrequency Global Navigation Satellite Systems (GNSS) such as GPS, GLONASS, and, in the future, Galileo. This paper describes the first inversion of the variation in sea level derived from GPS TEC data. We used a least squares inversion through a normal‐mode summation modeling. This technique was applied to three tsunamis in far field associated to the 2012 Haida Gwaii, 2006 Kuril Islands, and 2011 Tohoku events and for Tohoku also in close field. With the exception of the Tohoku far‐field case, for which the tsunami reconstruction by the TEC inversion is less efficient due to the ionospheric noise background associated to geomagnetic storm, which occurred on the earthquake day, we show that the peak‐to‐peak amplitude of the sea level variation inverted by this method can be compared to the tsunami wave height measured by a DART buoy with an error of less than 20%. This demonstrates that the inversion of TEC data with a tsunami normal‐mode summation approach is able to estimate quite accurately the amplitude and waveform of the first tsunami arrival.
Geoscientific Instrumentation, Methods and Data Systems Discussions | 2017
Pierdavide Coïsson; Kader Telali; Benoit Heumez; Vincent Lesur; Xavier Lalanne; Chang Jiang Xin
During magnetic observatory data acquisition, the data time stamp is kept synchronized with a precise source of time. This is usually done using a GPS-controlled pulse per second (PPS) signal. For some observatories located in remote areas or where internet restrictions are enforced, only the magnetometer data are transmitted, limiting the capabilities of monitoring the acquisition operations. The magnetic observatory in Lanzhou (LZH), China, experienced an unnoticed interruption of the GPS PPS starting 7 March 2013. The data logger clock drifted slowly in time: in 6 months a lag of 27 s was accumulated. After a reboot on 2 April 2014 the drift became faster, −2 s per day, before the GPS PPS could be restored on 8 July 2014. To estimate the time lags that LZH time series had accumulated, we compared it with data from other observatories located in East Asia. A synchronization algorithm was developed. Natural sources providing synchronous events could be used as markers to obtain the time lag between the observatories. The analysis of slices of 1 h of 1 s data at arbitrary UTC allowed estimating time lags with an uncertainty of ∼ 11 s, revealing the correct trends of LZH time drift. A precise estimation of the time lag was obtained by comparing data from co-located instruments controlled by an independent PPS. In this case, it was possible to take advantage of spikes and local noise that constituted precise time markers. It was therefore possible to determine a correction to apply to LZH time stamps to correct the data files and produce reliable 1 min averaged definitive magnetic data.
Geophysical Research Letters | 2011
Jonathan J. Makela; Ph. Lognonne; H Hebert; Thomas W. Gehrels; Lucie M. Rolland; Sebastien Allgeyer; Alam Kherani; G. Occhipinti; Elvira Astafyeva; Pierdavide Coïsson; Anne Loevenbruck; Eric Clévédé; Michael C. Kelley; J. Lamouroux
Earth, Planets and Space | 2011
G. Occhipinti; Pierdavide Coïsson; Jonathan J. Makela; Sebastien Allgeyer; Alam Kherani; H Hebert; Philippe Lognonné
Geophysical Journal International | 2012
E. A. Kherani; Ph. Lognonné; H Hebert; L. Rolland; Elvira Astafyeva; G. Occhipinti; Pierdavide Coïsson; D. Walwer; E. R. de Paula
Radio Science | 2011
Pierdavide Coïsson; G. Occhipinti; Philippe Lognonné; Jean-Philippe Molinié; Lucie M. Rolland
Geophysical Research Letters | 2016
Jeffrey J. Love; Pierdavide Coïsson; Antti Pulkkinen