Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierluigi Reveglia is active.

Publication


Featured researches published by Pierluigi Reveglia.


Journal of Agricultural and Food Chemistry | 2017

Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil

Alessio Cimmino; Tamara Cinelli; Marco Masi; Pierluigi Reveglia; Marcondes Araújo da Silva; Laura Mugnai; Sami Jorge Michereff; Giuseppe Surico; Antonio Evidente

Phytotoxic metabolites produced in liquid culture by six species of Lasiodiplodia isolated in Brazil and causing Botryosphaeria dieback of grapevine were chemically identified. As ascertained by LC/MS, L. brasiliense, L. crassispora, L. jatrophicola, and L. pseudotheobromae produced jasmonic acid, and L. brasiliense synthesized, besides jasmonic acid, also (3R,4S)-4-hydroxymellein. L. euphorbicola and L. hormozganensis produced some low molecular weight lipophilic toxins. Specifically, L. euphorbicola produced (-)-mellein, (3R,4R)-(-)- and (3R,4S)-(-)-4-hydroxymellein, and tyrosol, and L. hormozganensis synthesized tyrosol and p-hydroxybenzoic acid. This is the first report on the production of the above cited metabolites from L. euphorbicola and L. hormozganensis. The phytotoxic activity of the metabolites produced is also discussed and related to the symptoms these pathogens cause in the grapevine host plants.


Natural Product Research | 2018

On the metabolites produced by Colletotrichum gloeosporioides a fungus proposed for the Ambrosia artemisiifolia biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A

Marco Masi; Maria Chiara Zonno; Alessio Cimmino; Pierluigi Reveglia; Alexander Berestetskiy; Angela Boari; Maurizio Vurro; Antonio Evidente

Abstract Ambrosia artemisiifolia L. is responsible for serious allergies induced on humans. Different approaches for its control were proposed during the COST Action FA1203 “Sustainable management of Ambrosia artemisiifolia in Europe” (SMARTER). Fungal secondary metabolites often show potential herbicidal activity. Three phytotoxins were purified from the fungal culture filtrates of Colletotrichum gloeosporioides, isolated from infected leaves of A. artemisiifolia. They were identified by spectroscopic and chemical methods as colletochlorin A, orcinol and tyrosol (1, 2 and 3). The absolute configuration 6’R to colletochlorin A was assigned for the first time applying the advanced Mosher’s method. When assayed by leaf-puncture on A. artemisiifolia only 1 caused the appearance of large necrosis. The same symptoms were also induced by 1 on ambrosia plantlets associated with plant wilting. On Lemna minor, colletochlorin A caused a clear fronds browning, with a total reduction in chlorophyll content.


Journal of Agricultural and Food Chemistry | 2018

Isolation of phytotoxic phenols and characterization of a new 5-hydroxymethyl-2-isopropoxyphenol from Dothiorella vidmadera, a causal agent of grapevine trunk disease

Pierluigi Reveglia; Sandra Savocchia; Regina Billones-Baaijens; Alessio Cimmino; Antonio Evidente

Polyphenols were characterized from Dothiorella vidmadera (DAR78993), which was isolated from a grapevine in Australia. In total, six polyphenols were isolated including a new polyphenol characterized by a spectroscopic method (essentially NMR and HR ESIMS) as 5-hydroxymethyl-2-isopropoxyphenol. Tyrosol, benzene-1,2,4-triol, resorcinol, 3-(hydroxymethyl)phenol, and protocatechuic alcohol, the latter being the main metabolite, were also isolated. Although these are already known as naturally occurring compounds in microorganisms and plants, this is the first time they have been isolated from fungal organisms involved in grapevine trunk disease. When assayed on tomato seedlings, all the compounds show similar phytotoxic effects. However, when assayed on grapevine leaves (Vitis vinifera cv Shiraz), resorcinol was the most toxic compound, followed by protocatechuic alcohol and 5-hydroxymethyl-2-isopropoxyphenol.


Natural Product Research | 2017

Influence of light on the biosynthesis of ophiobolin A by Bipolaris maydis

Francesca Fanelli; Pierluigi Reveglia; Marco Masi; Giuseppina Mulè; Maria Chiara Zonno; Alessio Cimmino; Maurizio Vurro; Antonio Evidente

Abstract Ophiobolin A (O-A) is a sesterpenoid with numerous biological activities, including potential anticancer effects. Its production at an industrial level is hampered due to inability of fungus Bipolaris maydis to biosynthesise it in vitro in large amount. Among the environmental factors regulating fungal metabolism, light plays a crucial role. In this study, the use of different light wavelength (light emitting diodes (LEDs)) was evaluated to increase the O-A production. The white light allowed the highest production of the metabolite. The blue and green lights showed an inhibitory effect, reducing the production to 50%, as well as red and yellow but at a lower level. No correlation between fungal growth and metabolite production was found in relation to the light type. A novel application of LED technologies, which can be optimised to foster specific pathways and promote the production of metabolites having scientific and industrial interest was proposed.


Microbiological Research | 2017

Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo

Aida Raio; Pierluigi Reveglia; Gerardo Puopolo; Alessio Cimmino; Roberto Danti; Antonio Evidente

Pseudomonas chlororaphis subsp. aureofaciens encompasses bacterial strains that effectively control phytopathogenic fungi through the production of the natural antibiotics named phenazines. In this work, the involvement of phenazine production in the interaction between the biological control agent P. chlororaphis subsp. aureofaciens M71 and the fungus Seiridium cardinale, a serious cypress pathogen, was investigated. Field trials were carried out to assess the role of phenazines in the control of S. cardinale in vivo. Results showed that P. chlororaphis subsp. aureofaciens M71 and 30-84, both able to produce phenazine-1-carboxylic acid (PCA), drastically reduced the canker development incited by S. cardinale. Conversely, strain M71b, a natural gacA mutant of P. chlororaphis subsp. aureofaciens M71, showed a decrease in PCA production and a reduction in controlling S. cardinale. These results were enforced by the reduction of canker size higher than 94% registered when 6μg of pure PCA was directly applied on each cypress wound. Furthermore, PCA was detected in cypress plant tissues only when P. chlororaphis subsp. aureofaciens M71 was interacting with S. cardinale for 30 days. All these data support that the biological control of S. cardinale achieved by the application of P. chlororaphis subsp. aureofaciens M71 relies mainly on the ability of the bacterial strain to produce PCA in planta.


Phytochemistry | 2018

Synthesis and mode of action studies of N-[(-)-jasmonyl]-S-tyrosin and ester seiridin jasmonate

Pierluigi Reveglia; Andrea Chini; Alessandro Mandoli; Marco Masi; Alessio Cimmino; Gennaro Pescitelli; Antonio Evidente

Recent analyses on fungal jasmonic acid (JA)-containing metabolites suggest a mode-of-action of these naturally occurring compounds as inactive storage pools of JA. Plants and/or fungi can catabolize JA into the bioactive jasmonyl-isoleucine (JA-Ile) that in turn activates the JA-Ile-pathway in planta. To extend our knowledge on JA-derivates related to natural occurring JA conjugates, N-[(-)-jasmonyl]-S-tyrosin (JA-Tyr) and the ester JA-Sei between JA and seiridin, a fungal disubstituted furanone, were synthesized. The classical procedures for ester synthesis were applied for compound JA-Sei, while N-[(-)-jasmonyl]-S-tyrosin was synthesized with an optimized procedure. JA-Tyr and JA-Sei were characterized by spectroscopic method (essentially 1D and 2D NMR spectroscopy and ESI-MS) and their stereochemical composition was determined by means of HPLC and circular dichroism analysis. Finally, the activity of these JA-derivates was analyzed in planta. JA-Tyr and JA-Sei trigger JA-regulated plant responses, such as protein degradation and growth inhibition. These effects require the conversion of JA into JA-Ile and its recognition by the plant JA-Ile perception complex COI1-JAZ. Overall, these data suggest a mode-of-action of JA-Tyr and JA-Sei as inactive pool of JA that can be transformed into the bioactive JA-Ile to induce the canonical JA-Ile-pathway.


Natural Product Research | 2018

The main phytotoxic metabolite produced by a strain of Fusarium oxysporum inducing grapevine plant declining in Italy

Pierluigi Reveglia; Tamara Cinelli; Alessio Cimmino; Marco Masi; Antonio Evidente

Abstract A strain of Fusarium oxysporum was isolated from grapevine showing heavy decline disease in a vineyard of Veneto region in Italy. The fungus showed to produce phytotoxic metabolites when grown in liquid culture. The main metabolite was identified as fusaric acid produced for the first time as a phytotoxin by a strain of F. oxysporom isolated from diseased grapevine plants. Its quantification in the fungus cultures filtrates was accomplished by HPLC. When tested on tobacco by leaf-puncture assay fusaric acid at 0.5 mg/mL induced the formation of extensive necrosis.


Molecules | 2018

Fungal Metabolite Antagonists of Plant Pests and Human Pathogens: Structure–Activity Relationship Studies

Marco Masi; Paola Nocera; Pierluigi Reveglia; Alessio Cimmino; Antonio Evidente

Fungi are able to produce many bioactive secondary metabolites that belong to different classes of natural compounds. Some of these compounds have been selected for their antagonism against pests and human pathogens and structure–activity relationship (SAR) studies have been performed to better understand which structural features are essential for the biological activity. In some cases, these studies allowed for the obtaining of hemisynthetic derivatives with increased selectivity and stability in respect to the natural products as well as reduced toxicity in view of their potential practical applications. This review deals with the SAR studies performed on fungal metabolites with potential fungicidal, bactericidal, insecticidal, and herbicidal activities from 1990 to the present (beginning of 2018).


Journal of Experimental Botany | 2018

The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway

Andrea Chini; Alessio Cimmino; Marco Masi; Pierluigi Reveglia; Paola Nocera; Roberto Solano; Antonio Evidente

The fungal jasmonate lasiojasmonate A functions as a source of jasmonic acid that activates the JA-isoleucine pathway in Arabidopsis.


Journal of Agricultural and Food Chemistry | 2018

Diploquinones A and B, two new phytotoxic tetrasubstituted 1,4-naphthoquinones from Diplodia mutila, a causal agent of grapevine trunk disease

Pierluigi Reveglia; Sandra Savocchia; Regina Billones-Baaijens; Marco Masi; Alessio Cimmino; Antonio Evidente

Two new phytotoxic tetrasubstituted 1,4-naphthoquinones, named diploquinones A and B, were isolated together with vanillic acid from Diplodia mutila (DAR78993), a grapevine pathogen involved in Botryosphaeria dieback in Australia. Diploquinones A and B were characterized as 6,7-dihydroxy-2-methoxy-5-methylnaphthalene-1,4-dione and 3,5,7-trihydroxy-2-methoxynaphthalene-1,4-dione using spectroscopic methods (essentially 1D and 2D 1H and 13C NMR and HR ESIMS). The already known vanillic acid was isolated for the first time as fungal phytotoxin and as metabolite of D. mutila. The three compounds were assayed on detached grapevine leaves ( Vitis vinifera cv. Shiraz) at concentrations of 10-3 M and 2.5 × 10-3 M. Vanillic acid showed the highest phytotoxic effect on grapevine leaves irrespective of the tested concentration, while diploquinones A and B showed varying degrees of toxicity.

Collaboration


Dive into the Pierluigi Reveglia's collaboration.

Top Co-Authors

Avatar

Alessio Cimmino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Masi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Chini

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge