Piero Decleva
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piero Decleva.
Reports on Progress in Physics | 2001
H. Bachau; E Cormier; Piero Decleva; J E Hansen; Fernando Martín
One of the most significant developments in computational atomic and molecular physics in recent years has been the introduction of B-spline basis sets in calculations of atomic and molecular structure and dynamics. B-splines were introduced in applied mathematics more than 50 years ago, but it has been in the 1990s, with the advent of powerful computers, that the number of applications has grown exponentially. In this review we present the main properties of B-splines and discuss why they are useful to solve different problems in atomic and molecular physics. We provide an extensive reference list of theoretical works that have made use of B-spline basis sets up to 2000. Among these, we have focused on those applications that have led to the discovery of new interesting phenomena and pointed out the reasons behind the success of the approach.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Sophie E. Canton; Etienne Plésiat; John D. Bozek; Bruce S. Rude; Piero Decleva; Fernando Martín
Vibrationally resolved valence-shell photoionization spectra of H2, N2 and CO have been measured in the photon energy range 20–300 eV using third-generation synchrotron radiation. Young’s double-slit interferences lead to oscillations in the corresponding vibrational ratios, showing that the molecules behave as two-center electron-wave emitters and that the associated interferences leave their trace in the angle-integrated photoionization cross section. In contrast to previous work, the oscillations are directly observable in the experiment, thereby removing any possible ambiguity related to the introduction of external parameters or fitting functions. A straightforward extension of an original idea proposed by Cohen and Fano [Cohen HD, Fano U (1966) Phys Rev 150:30] confirms this interpretation and shows that it is also valid for diatomic heteronuclear molecules. Results of accurate theoretical calculations are in excellent agreement with the experimental findings.
Physical Review Letters | 2011
Joseph P. Farrell; Simon Petretti; Johann Förster; Brian K. McFarland; Limor S. Spector; Yulian V. Vanne; Piero Decleva; P. H. Bucksbaum; Alejandro Saenz; Markus Gühr
High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H(2)O and D(2)O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by solving the time-dependent Schrödinger equation to simulate strong field ionization and high harmonic generation from the water isotopes. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules.
Physical Review Letters | 2010
Simon Petretti; Yulian V. Vanne; Alejandro Saenz; Alberto Castro; Piero Decleva
The ionization probability of N2, O2, and CO2 in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrödinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D. Pavicić, Phys. Rev. Lett. 98, 243001 (2007)] and good agreement is found for N2 and O2. For CO2 a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.
Chemical Reviews | 2017
M. Nisoli; Piero Decleva; Francesca Calegari; Alicia Palacios; Fernando Martín
Advances in attosecond science have led to a wealth of important discoveries in atomic, molecular, and solid-state physics and are progressively directing their footsteps toward problems of chemical interest. Relevant technical achievements in the generation and application of extreme-ultraviolet subfemtosecond pulses, the introduction of experimental techniques able to follow in time the electron dynamics in quantum systems, and the development of sophisticated theoretical methods for the interpretation of the outcomes of such experiments have raised a continuous growing interest in attosecond phenomena, as demonstrated by the vast literature on the subject. In this review, after introducing the physical mechanisms at the basis of attosecond pulse generation and attosecond technology and describing the theoretical tools that complement experimental research in this field, we will concentrate on the application of attosecond methods to the investigation of ultrafast processes in molecules, with emphasis in molecules of chemical and biological interest. The measurement and control of electronic motion in complex molecular structures is a formidable challenge, for both theory and experiment, but will indubitably have a tremendous impact on chemistry in the years to come.
Journal of Physics B | 2016
Francesca Calegari; Andrea Trabattoni; Alicia Palacios; David Ayuso; M. C. Castrovilli; Jason B. Greenwood; Piero Decleva; Fernando Martín; M. Nisoli
We acknowledge the support from the European Research Council under the ERC grants no. 637756 STARLIGHT, no. 227355 ELYCHE and no. 290853 XCHEM, LASERLABEUROPE (grant agreement no. 284464, European Commissions Seventh Framework Programme), European COST Action CM1204 XLIC, the Ministerio de Ciencia e Innovacion project FIS2013-42002-R, European grants MC-ITN CORINF and MC-RG ATTOTREND 268284, UKs Science and Technology Facilities Council Laser Loan Scheme, the Engineering and Physical Sciences Research Council (grant EP/J007048/ 1), the Leverhulme Trust (grant RPG-2012-735), and the Northern Ireland Department of Employment and Learning
Chemical Physics Letters | 1981
Giancarlo De Alti; Piero Decleva
Abstract The ionization energies of furan, thiophene, selenophene and tellurophene are evaluated by the MS Xα method. From the results obtained and a comparison with previous calculations an assignment or experimental spectra is proposed. An analysis of the nature of the molecular orbitals is presented.
Proceedings of the National Academy of Sciences of the United States of America | 2013
R. K. Kushawaha; M. Patanen; Renaud Guillemin; Loïc Journel; Catalin Miron; Marc Simon; Maria Novella Piancastelli; C. Skates; Piero Decleva
Significance Electrons emitted from equivalent centers in isolated molecules via the photoelectric effect interfere, providing an atomic-scale equivalent of the celebrated Young’s double-slit experiment. We have developed a theoretical and experimental framework to characterize such interference phenomena accurately, and we have applied it to the simplest hydrocarbons with different bond lengths and bonding types. We demonstrate that such fundamental observations can be related to crucial structural information, such as chemical bond lengths, molecular orbital composition, and quantitative assessment of many-body effects, with a very high accuracy. The experimental and theoretical tools we use are relatively simple and easily accessible, and our method can readily be extended to larger systems, including molecules of biological interest. Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young’s double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70–700 eV. A strong dependence of the oscillation period on the C–C distance is observed, which can be used to determine bond lengths between selected pairs of equivalent atoms with an accuracy of at least 0.01 Å. Furthermore, we show that the observed oscillations are directly informative of the nature and atomic composition of the inner-valence molecular orbitals and that observed ratios are quantitative measures of elusive many-body effects. The technique and analysis can be immediately extended to a large class of compounds.
New Journal of Physics | 2012
Luca Argenti; Taniya Darrah Thomas; Etienne Plésiat; XiaoJing Liu; Catalin Miron; Toralf Lischke; G. Prümper; K. Sakai; T. Ouchi; R. Püttner; Vladimir Sekushin; Takahiro Tanaka; Masamitsu Hoshino; Hiroshi Tanaka; Piero Decleva; K. Ueda; Fernando Martín
We report the first evidence for double-slit interferences in a polyatomic molecule, which we have observed in the experimental carbon 1s photoelectron spectra of acetylene (or ethyne). The spectra have been measured over the photon energy range of 310-930eV and show prominent oscillations in the intensity ratios g()/ u() for the vibrational quantum numbers = 0,1 and for the ratios s( = 1)/ s( = 0) for the symmetry s = g,u. The experimental findings are in very good agreement with ab initio density
ChemPhysChem | 2009
Stefano Turchini; D. Catone; G. Contini; N. Zema; Simona Irrera; Mauro Stener; Devis Di Tommaso; Piero Decleva; Tommaso Prosperi
A photoelectron circular dichroism (CD) study of the valence states of 2-amino-1-propanol (alaninol) in the gas phase is presented. The aim of the investigation is to reveal conformer population effects in the valence-state photoelectron spectrum. The experimental dispersion of the dichroic D parameter of valence states as a function of the photon excitation energy is compared with its theoretical value calculated by employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. The theoretical values are in very good agreement with the experimental data when the conformer population distribution is taken into account. Moreover, thanks to a comparison between experiment and theory, a clear assignment of the molecular orbital character and conformer geometry is given to the features of the photoelectron spectrum. This work indicates in a detailed experimental analysis that CD in photoelectron spectroscopy is an effective technique to disentangle the conformer assignment in photoelectron spectra.