Piero Giulio Giulianini
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piero Giulio Giulianini.
Journal of Immunology | 2003
Mario Pausa; Valentina Pellis; Marina Cinco; Piero Giulio Giulianini; Gianni Presani; Sandra Perticarari; Rossella Murgia; Francesco Saverio Tedesco
Borrelia burgdorferi, the etiological agent of Lyme disease, comprises three genospecies, Borrelia garinii, afzelii, and burgdorferi sensu strictu, that exhibit different pathogenicity and differ in the susceptibility to C-mediated killing. We examined C-sensitive and C-resistant strains of B. burgdorferi for deposition of C3 and late C components by fluorescence microscope and flow cytometry. Despite comparable deposition of C3 on the two strains, the resistant strain exhibited reduced staining for C6 and C7, barely detectable C9, and undetectable poly C9. Based on these findings, we searched for a protein that inhibits assembly of C membrane attack complex and documented an anti-human CD59-reactive molecule on the surface of C-resistant spirochetes by flow cytometry and electron microscopy. A molecule of 80 kDa recognized by polyclonal and monoclonal anti-CD59 Abs was identified in the membrane extract of C-resistant strains by SDS-PAGE and Western blot analysis. The molecule was released from the bacterial wall using deoxycholate and trypsin, suggesting its insertion into the bacterial membrane. The CD59-like molecule acts as C inhibitor on Borrelia because incubation with F(ab′)2 anti-CD59 renders the serum-resistant strain exquisitely susceptible to C-mediated killing and guinea pig erythrocytes bearing C5b-8, unlike the RBC coated with C5b-7, are protected from reactive lysis by the bacterial extract. Western blot analysis revealed preferential binding of the C inhibitory molecule to C9 and weak interaction with C8β.
The Journal of Experimental Biology | 2004
Simonetta Lorenzon; Paolo Edomi; Piero Giulio Giulianini; Romina Mettulio; Enrico A. Ferrero
SUMMARY This study investigates (by means of bioassays and ELISA using an antibody against recombinant cHH) the variation of cHH levels in the eyestalks and haemolymph of Palaemon elegans (Decapoda, Caridea) following exposure to various stresses (heavy metals and lipopolysaccharide), and correlates them with the variation in amount and time course of blood glucose. The dose-relationship between exposure to copper and quick release of cHH from the eyestalk into haemolymph was confirmed by variation of blood glucose with a dose-related hyperglycaemia, that peaked 2 h after immersion in contaminated seawater. Animals exposed to a sublethal concentration of mercury showed the same dose relation between toxicant, release of cHH from the eyestalk, increment of circulating hormone level and subsequent hyperglycaemia as observed for copper contamination. It is of note that although the highest lethal mercury concentration induced the release of cHH from the eyestalk into the haemolymph, it was not followed by a significant variation of blood glucose. Step doses of a bacterial contaminant [such as lipopolysaccharide (LPS) from E. coli injected into shrimps] confirmed the dose-relationship and convergent chain of events that bring about hyperglycaemia. These are the first data that relate the release of cHH from the eyestalk, the circulating hormone level and the consequent glycaemic response to stress. Moreover, they confirm the dose-related pathway that leads to variation of blood glucose as a quantitative biomarker of environmental quality, even at sublethal toxicant concentrations.
The Journal of Experimental Biology | 2005
Simonetta Lorenzon; Paolo Edomi; Piero Giulio Giulianini; Romina Mettulio; Enrico A. Ferrero
SUMMARY In this study, we investigated (using bioassays and ELISA) the variation of cHH (crustacean hyperglycemic hormone) level in the eyestalks and hemolymph of Palaemon elegans (Rathke) (Decapoda, Caridea) following injection of serotonin (5-HT) and dopamine (DA) and correlated cHH profile with the variation in amount and time course of glycemia. 5-HT induced in P. elegans a rapid and massive release of cHH from the eyestalk into the hemolymph followed by hyperglycemia. On the contrary, DA did not significantly affect cHH release and hyperglycemia. In addition, we measured the level and variation of 5-HT in the eyestalk and hemolymph of P. elegans following copper contamination. The release of 5-HT from the eyestalk is very rapid and dose dependent. In the hemolymph, a peak of 5-HT occurs after 30 min, and again the circulating concentration of 5-HT is dose dependent on copper exposure. After 1 h, the level of 5-HT slowly decreases to basal level. The release of 5-HT from the eyestalk into the hemolymph after copper exposure precedes the release of cHH, confirming its role as a neurotransmitter acting on cHH neuroendocrine cells. The fact that copper induced a rapid and massive release of 5-HT from the eyestalk can explain its demonstrated role in inducing the release of cHH and the consequent hyperglycemia in intact but not eyestalkless animals.
Gene | 2002
Paolo Edomi; E. Azzoni; Romina Mettulio; N. Pandolfelli; Enrico A. Ferrero; Piero Giulio Giulianini
The gonad-inhibiting hormone (GIH) belongs to a neuropeptide family synthesized and released in a neurohemal complex of crustacean eyestalks. The GIH is involved in gonad maturation and plays a more complex role in the control of reproduction and molting. With a combination of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends approaches we determined the cDNA sequence of the Norway lobster Nephrops norvegicus prepro GIH. The open reading frame of 339 bp codes for a polypeptide of 112 amino acids showing 96% identity with the other known GIH of Homarus americanus. The precursor peptide consists of a putative signal peptide of 31 amino acids and a putative mature peptide region of 81. RT-PCR analysis shows that GIH mRNA is expressed mainly in eyestalks, both in female and male; the expression of GIH mRNA also in supraesophageal ganglia suggests the existence of additional GIH-producing neurons besides those of eyestalks. A specific polyclonal antibody was raised against a portion of the mature peptide region obtained through expression in Escherichia coli fused to glutathione-S-transferase. Immunocytochemical studies were carried out by using this antibody in N. norvegicus and in other crustaceans, Munida rugosa and Squilla mantis; these locate GIH in superficial axon terminals of the releasing organ, the sinus gland. The identification of a second GIH sequence in crustaceans allows to hypothesize the occurrence, within the neuropeptide family, of three subfamilies probably involved in different functions: crustacean hyperglycemic hormones, GIHs and molt-inhibiting hormones/mandibular organ-inhibiting hormones.
Gene | 2015
Chiara Manfrin; Moshe Tom; Gianluca De Moro; Marco Gerdol; Piero Giulio Giulianini; Alberto Pallavicini
The red swamp crayfish (Procambarus clarkii, Girard 1852) is among the most economically important freshwater crustacean species, and it is also considered one of the most aggressive invasive species worldwide. Despite its commercial importance and being one of the most studied crayfish species, its genomic and transcriptomic layout has only been partially studied. Illumina RNA-sequencing was applied to characterize the eyestalk transcriptome and identify its most characterizing genes. A collection of 83,170,732 reads from eyestalks was obtained using Illumina paired-end sequencing technology. A de novo assembly was performed with the Trinity assembly software generating 119,255 contigs (average length of 1,007 bp) and identifying the first sequenced transcriptome in this species. The eyestalk is a major site for the production of neurohormones and controls a variety of physiological functions such as osmotic regulation, molting, epidermal color patterns and reproduction. Hence, its transcriptomic characterization is interesting and potentially instrumental to the elucidation of genes which have not been comprehensively described yet. Moreover, the availability of such a large amount of information supported the characterization of molecular families which have never been described before. The P. clarkii eyestalk transcriptome reported here provides a resource for improving the knowledge of the still incompletely defined neuroendocrinology of this species and represents an important source of data for all the interested carcinologists.
Regulatory Peptides | 2008
Alessandro Mosco; Paolo Edomi; Corrado Guarnaccia; Simonetta Lorenzon; Sándor Pongor; Enrico A. Ferrero; Piero Giulio Giulianini
The crustacean hyperglycemic hormone is the most abundant neuropeptide present in the eyestalk of Crustacea and its main role is to control the glucose level in the hemolymph. Our study was aimed at assessing the importance of C-terminal amidation for its biological activity. Two recombinant peptides were produced, Asl-rcHH-Gly with a free carboxyl terminus and Asl-rcHH-amide with an amidated C-terminus. Homologous bioassays performed on the astacid crayfish Astacus leptodactylus showed that the amidated peptide had a stronger hyperglycemic effect compared to the non-amidated peptide. To assess the relevance of amidation also in other decapods and how much the differences in the cHH amino acid sequence can affect the functionality of the peptides, we carried out heterologous bioassays on the cambarid Procambarus clarkii and palaemonid Palaemon elegans. The Asl-rcHH-amide elicited a good response in P. clarkii and in P. elegans. The injection of Asl-rcHH-Gly evoked a weak response in both species. These results prove the importance of C-terminal amidation for the biological activity of cHH in crayfish as well as the role of the peptide primary sequence for the species-specificity hormone-receptor recognition.
Regulatory Peptides | 2004
Romina Mettulio; Piero Giulio Giulianini; Enrico A. Ferrero; Simonetta Lorenzon; Paolo Edomi
The neuro-endocrine X-organ sinus-gland complex regulates important crustacean physiological processes, such as growth, reproduction and molting. Its major products are the neuropeptides of the cHH/MIH/GIH family. Until now the structure-function relationships of these neuropeptides were established by sequence comparison. To study the functional relevance of conserved amino acid residues or peptide motifs, we generated point and deletion mutants of the Norway lobster Nephrops norvegicus cHH. The wild type mature neuropeptide cHH and its mutant forms were expressed in bacteria as fusion proteins and assayed in vivo to assess their hyperglycemic activity. The wild type cHH had a hyperglycemic activity similar to that of cHH present in an eyestalk extract, and it was blocked by an anti-recombinant cHH antibody. Bioassays of cHHs, obtained by a progressive deletion of five highly conserved motifs, showed that the only deleted cHH, which conserves a hyperglycemic activity, is the one lacking the C-terminal motif, but still retaining all the motifs reported to be important for functional specificity and three-dimensional structure. All the cHH point mutants lacked a hyperglycemic activity. These results identify amino acid residues that are required for the hyperglycemic activity of cHH.
Cell and Tissue Research | 2002
Piero Giulio Giulianini; N. Pandolfelli; Simonetta Lorenzon; Enrico A. Ferrero; Paolo Edomi
Abstract. The crustacean hyperglycaemic hormones (cHHs) are multifunctional neuropeptides that play a central role in the physiology of crustaceans. A partial cDNA coding for cHH of the Norway lobster, Nephrops norvegicus, was cloned; this cDNA was fused to glutathione-S-transferase (GST) to obtain a recombinant fusion protein that was used to raise a rabbit antiserum and to perform a biological assay. The specificity of the purified antibody was demonstrated by means of Western blotting. To validate the specificity of the purified antibody to the cHH of N. norvegicus and its cross-reactivity with other species, we performed standard immunocytochemistry of the eyestalk on: (1) paraffin sections of the decapod species N. norvegicus, Munida rugosa and Astacus leptodactylus and of the stomatopod Squilla mantis; (2) semithin resin sections of N. norvegicus and Palaemon elegans; (3) ultrathin sections of N. norvegicus sinus gland (transmission electron microscopy studies). The pattern of immunoreactivity shown by N. norvegicus eyestalk sections conforms to distribution, relative amount and ultrastructural features of cHH-containing neurons and nerve endings as reported in the previous literature. In all the crustacean species examined, the antibody marks precisely the X organ-sinus gland complex and unspecific staining is completely lacking. In addition, its specific cross-reaction by immunoprecipitation depletes shrimp eyestalk extract of hyperglycaemic activity in an in vivo bioassay. The results obtained show a cHH-specific molecular recognition despite the fact that the species tested belong to systematic groups increasingly remote in the phylogenetic tree. The antibody could be used for advancing our knowledge on cHH activity in a variety of crustacean species, e.g. for monitoring reproductive and stress conditions.
The Journal of Experimental Biology | 2014
Moshe Tom; Chiara Manfrin; Sook J. Chung; Amir Sagi; Marco Gerdol; Gianluca De Moro; Alberto Pallavicini; Piero Giulio Giulianini
The rigid crustacean exoskeleton, the cuticle, is composed of the polysaccharide chitin, structural proteins and mineral deposits. It is periodically replaced to enable growth and its construction is an energy-demanding process. Ecdysis, the shedding event of the old cuticle, is preceded by a preparatory phase, termed premolt, in which the present cuticle is partially degraded and a new one is formed underneath it. Procambarus clarkii (Girard 1852), an astacid crustacean, was used here to comprehensively examine the changing patterns of gene expression in the hypodermis underlying the cuticle of the carapace at seven time points along ~14 premolt days. Next generation sequencing was used to construct a multi-tissue P. clarkii transcript sequence assembly for general use in a variety of transcriptomic studies. A reference transcriptome was created here in order to perform digital transcript expression analysis, determining the gene expression profiles in each of the examined premolt stages. The analysis revealed a cascade of sequential expression events of molt-related genes involved in chitin degradation, synthesis and modification, as well as synthesis of collagen and four groups of cuticular structural genes. The new description of major transcriptional events during premolt and the determination of their timing provide temporal markers for future studies of molt progress and regulation. The peaks of the expression of the molt-related genes were preceded by expression peaks of cytoskeletal genes that are hypothesized to be essential for premolt progress through regulating protein synthesis and/or transport, probably by remodeling the cytoskeletal structure.
PLOS ONE | 2013
Chiara Manfrin; Moshe Tom; Gianluca De Moro; Marco Gerdol; Corrado Guarnaccia; Alessandro Mosco; Alberto Pallavicini; Piero Giulio Giulianini
The crustacean Hyperglycemic Hormone (cHH) is a neuropeptide present in many decapods. Two different chiral isomers are simultaneously present in Astacid crayfish and their specific biological functions are still poorly understood. The present study is aimed at better understanding the potentially different effect of each of the isomers on the hepatopancreatic gene expression profile in the crayfish Pontastacus leptodactylus, in the context of short term hyperglycemia. Hence, two different chemically synthesized cHH enantiomers, containing either L- or D-Phe3, were injected to the circulation of intermolt females following removal of their X organ-Sinus gland complex. The effects triggered by the injection of the two alternate isomers were detected after one hour through measurement of circulating glucose levels. Triggered changes of the transcriptome expression profile in the hepatopancreas were analyzed by RNA-seq. A whole transcriptome shotgun sequence assembly provided the assumedly complete transcriptome of P. leptodactylus hepatopancreas, followed by RNA-seq analysis of changes in the expression level of many genes caused by the application of each of the hormone isomers. Circulating glucose levels were much higher in response to the D-isoform than to the L-isoform injection, one hour from injection. Similarly, the RNA-seq analysis confirmed a stronger effect on gene expression following the administration of D-cHH, while just limited alterations were caused by the L-isomer. These findings demonstrated a more prominent short term effect of the D-cHH on the transcription profile and shed light on the effect of the D-isomer on specific functional gene groups. Another contribution of the study is the construction of a de novo assembly of the hepatopancreas transcriptome, consisting of 39,935 contigs, that dramatically increases the molecular information available for this species and for crustaceans in general, providing an efficient tool for studying gene expression patterns in this organ.
Collaboration
Dive into the Piero Giulio Giulianini's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs