Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piero Luigi Ipata is active.

Publication


Featured researches published by Piero Luigi Ipata.


FEBS Journal | 2006

Pentose phosphates in nucleoside interconversion and catabolism

Maria Grazia Tozzi; Marcella Camici; Laura Mascia; Francesco Sgarrella; Piero Luigi Ipata

Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose‐5‐phosphate and ribose‐1‐phosphate, are readily interconverted by the action of phosphopentomutase. Ribose‐5‐phosphate is the direct precursor of 5‐phosphoribosyl‐1‐pyrophosphate, for both de novo and ‘salvage’ synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose‐1‐phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5‐fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.


Current Topics in Medicinal Chemistry | 2011

Neurological Disorders of Purine and Pyrimidine Metabolism

Vanna Micheli; Marcella Camici; Maria Grazia Tozzi; Piero Luigi Ipata; S. Sestini; Matteo Bertelli; Giuseppe Pompucci

Purines and pyrimidines, regarded for a long time only as building blocks for nucleic acid synthesis and intermediates in the transfer of metabolic energy, gained increasing attention since genetically determined aberrations in their metabolism were associated clinically with various degrees of mental retardation and/or unexpected and often devastating neurological dysfunction. In most instances the molecular mechanisms underlying neurological symptoms remain undefined. This suggests that nucleotides and nucleosides play fundamental but still unknown roles in the development and function of several organs, in particular central nervous system. Alterations of purine and pyrimidine metabolism affecting brain function are spread along both synthesis (PRPS, ADSL, ATIC, HPRT, UMPS, dGK, TK), and breakdown pathways (5NT, ADA, PNP, GCH, DPD, DHPA, TP, UP), sometimes also involving pyridine metabolism. Explanations for the pathogenesis of disorders may include both cellular and mitochondrial damage: e.g. deficiency of the purine salvage enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase are associated to the most severe pathologies, the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to impairment of mitochondrial functions. This review gathers the presently known inborn errors of purine and pyrimidine metabolism that manifest neurological syndromes, reporting and commenting on the available hypothesis on the possible link between specific enzymatic alterations and brain damage. Such connection is often not obvious, and though investigated for many years, the molecular basis of most dysfunctions of central nervous system associated to purine and pyrimidine metabolism disorders are still unexplained.


Biochimica et Biophysica Acta | 1999

Ribose 1-phosphate and inosine activate uracil salvage in rat brain

Laura Mascia; Tiziana Cotrufo; Mario Cappiello; Piero Luigi Ipata

The purpose of this study was to determine the mechanism by which inosine activates pyrimidine salvage in CNS. The levels of cerebral inosine, hypoxanthine, uridine, uracil, ribose 1-phosphate and inorganic phosphate were determined, to evaluate the Gibbs free energy changes (deltaG) of the reactions catalyzed by purine nucleoside phosphorylase and uridine phosphorylase, respectively. A deltaG value of 0.59 kcal/mol for the combined reaction inosine+uracil <==> uridine+hypoxanthine was obtained, suggesting that at least in anoxic brain the system may readily respond to metabolite fluctuations. If purine nucleoside phosphorolysis and uridine phosphorolysis are coupled to uridine phosphorylation, catalyzed by uridine kinase, whose activity is relatively high in brain, the three enzyme activities will constitute a pyrimidine salvage pathway in which ribose 1-phosphate plays a pivotal role. CTP, presumably the last product of the pathway, and, to a lesser extent, UTP, exert inhibition on rat brain uridine nucleotides salvage synthesis, most likely at the level of the kinase reaction. On the contrary ATP and GTP are specific phosphate donors.


Biochimica et Biophysica Acta | 1998

In vitro assessment of salvage pathways for pyrimidine bases in rat liver and brain

Mario Cappiello; Laura Mascia; C. Scolozzi; Francesco Giorgelli; Piero Luigi Ipata

In this paper we extend our previous observation on the mobilization of the ribose moiety from guanosine to xanthine catalyzed by rat liver extracts (Giorgelli et al., Biochim. Biophys. Acta 1335 (1997) 16-22). The data show that in rat liver and brain extracts the activated ribose, stemming from inosine and guanosine phosphorolysis as ribose 1-phosphate, can be used to salvage uracil to uracil nucleotides. Uridine is an intermediate. The salvage process occurs even in the presence of excess inorganic phosphate suggesting that uridine phosphorylase may function in vivo as an anabolic enzyme. Ribose 5-phosphate cannot substitute for inosine, guanosine or ribose 1-phosphate as ribose donor. When inorganic phosphate was substituted with arsenate, hindering the formation of ribose 1-phosphate, no ribose transfer could be observed. A similar pathway occurs at the deoxy level. The deoxyribose moiety of deoxyinosine can be used to salvage thymine to thymine nucleotides, again in the presence of excess inorganic phosphate. Our results introduce a novel aspect of the salvage pathway, in which ribose 1-phosphate seems to play a pivotal role.


Neurochemistry International | 2007

Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain

Francesco Balestri; Catia Barsotti; Ludovico Lutzemberger; Marcella Camici; Piero Luigi Ipata

Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to beta-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.


Biochimica et Biophysica Acta | 2000

In vitro recycling of α-D-ribose 1-phosphate for the salvage of purine bases

Laura Mascia; Mario Cappiello; Silvia Cherri; Piero Luigi Ipata

Abstract In this paper, we extend our previous observation on the mobilization of the ribose moiety from a purine nucleoside to a pyrimidine base, with subsequent pyrimidine nucleotides formation (Cappiello et al., Biochim. Biophys. Acta 1425 (1998) 273–281). The data show that, at least in vitro, also the reverse process is possible. In rat brain extracts, the activated ribose, stemming from uridine as ribose 1-phosphate, can be used to salvage adenine and hypoxanthine to their respective nucleotides. Since the salvage of purine bases is a 5-phosphoribosyl 1-pyrophosphate-dependent process, catalyzed by adenine phosphoribosyltransferase and hypoxanthine guanine phosphoribosyltransferase, our results imply that Rib-1P must be transformed into 5-phosphoribosyl 1-pyrophosphate, via the successive action of phosphopentomutase and 5-phosphoribosyl 1-pyrophosphate synthetase; and ,in fact, no adenosine could be found as an intermediate when rat brain extracts were incubated with adenine, Rib-1P and ATP, showing that adenine salvage does not imply adenine ribosylation, followed by adenosine phosphorylation. Taken together with our previous results on the Rib-1P-dependent salvage of pyrimidine nucleotides, our results give a clear picture of the in vitro Rib-1P recycling, for both purine and pyrimidine salvage.


Biochimica et Biophysica Acta | 1997

Recycling of α-d-ribose 1-phosphate for nucleoside interconversion

Francesco Giorgelli; Cinzia Bottai; Laura Mascia; C. Scolozzi; Marcella Camici; Piero Luigi Ipata

Mobilization of the ribose moiety and of the amino group of guanosine may be realized in rat liver extract by the concerted action of purine nucleoside phosphorylase and guanase. Ribose 1-phosphate formed from guanosine through the action of purine nucleoside phosphorylase acts as ribose donor in the synthesis of xanthosine catalyzed by the same enzyme. The presence of guanase, which irreversibly converts guanine to xanthine, affects the overall process of guanosine transformation. As a result of this purine pathway, guanosine is converted into xanthosine, thus overcoming the lack of guanosine deaminase in mammals. Furthermore, in rat liver extract the activated ribose moiety stemming from the catabolism of purine nucleosides can be transferred to uracil and, in the presence of ATP, used for the synthesis of pyrimidine nucleotides; therefore, purine nucleosides can act as ribose donors for the salvage of pyrimidine bases.


The International Journal of Biochemistry & Cell Biology | 2010

Metabolic interplay between intra- and extra-cellular uridine metabolism via an ATP driven uridine–UTP cycle in brain

Piero Luigi Ipata; Catia Barsotti; Maria Grazia Tozzi; Marcella Camici; Francesco Balestri

Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and biomembranes, has several trophic functions in the central nervous system, that involve a physiological regulation of pyrimidine nucleotides and phospholipids content, and a maintenance of brain metabolism under ischemia, or pathological situations. The understanding of uridine production in the brain is therefore of fundamental importance. Brain has a limited capacity to synthesize ex novo the pyrimidine ring, and a reasonable source of brain uridine is UTP. The kinetics of UTP breakdown, as catalysed by post-mitochondrial brain extracts and membrane preparations reported herein suggests that in normoxic conditions uridine is locally generated in brain exclusively in the extracellular space, and that any uptaken uridine is salvaged to UTP. It is now well established that cytosolic UTP can be released to interact with a subset of P2Y receptors, inducing a variety of molecular and cellular effects, leading to neuroprotection, while uridine is uptaken via an equilibrative or a Na(+)-dependent transport system, to exert its trophic effects in the cytosol. An ATP driven uridine-UTP cycle can be envisaged, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolised to UTP in the cytosol, and converted back to uridine in extracellular space.


Journal of Biological Chemistry | 2005

Evidence for the Involvement of Cytosolic 5′-Nucleotidase (cN-II) in the Synthesis of Guanine Nucleotides from Xanthosine

Catia Barsotti; Rossana Pesi; Michela Giannecchini; Piero Luigi Ipata

In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5′-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine → XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5′-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD+-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5′-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.


Advances in Physiology Education | 2011

Origin, utilization, and recycling of nucleosides in the central nervous system

Piero Luigi Ipata

The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article.

Collaboration


Dive into the Piero Luigi Ipata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge