Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piero Morandini is active.

Publication


Featured researches published by Piero Morandini.


PLOS ONE | 2008

The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis

Jules Beekwilder; Wessel van Leeuwen; Nicole M. van Dam; Monica Bertossi; Valentina Grandi; Luca Mizzi; Mikhail Soloviev; Laszlo Szabados; Jos Molthoff; Bert Schipper; Hans Verbocht; Ric C. H. de Vos; Piero Morandini; Mark G. M. Aarts; Arnaud G. Bovy

Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.


BMC Plant Biology | 2009

Characterization of WRKY co-regulatory networks in rice and Arabidopsis

Stefano Berri; Pamela Abbruscato; Odile Faivre-Rampant; Ana C. M. Brasileiro; Irene Fumasoni; Kouji Satoh; Shoshi Kikuchi; Luca Mizzi; Piero Morandini; Mario Enrico Pè; Pietro Piffanelli

BackgroundThe WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data.ResultsThe presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes.ConclusionIn this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the same biological processes or signal transduction pathways. Our approach will contribute to unveil gene cooperation pathways not yet identified by classical genetic analyses. This information will open new routes contributing to the dissection of WRKY signal transduction pathways in plants.


New Phytologist | 2008

Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways

Margit Menges; Róbert Dóczi; László Ökrész; Piero Morandini; Luca Mizzi; Mikhail Soloviev; James Augustus Henry Murray; László Bögre

* Mitogen activated protein kinase (MAPK) pathways are signal transduction modules with layers of protein kinases having c. 120 genes in Arabidopsis, but only a few have been linked experimentally to functions. * We analysed microarray expression data for 114 MAPK signalling genes represented on the ATH1 Affymetrix arrays; determined their expression patterns during development, and in a wide range of time-course microarray experiments for their signal-dependent transcriptional regulation and their coregulation with other signalling components and transcription factors. * Global expression correlation of the MAPK genes with each of the represented 21 692 Arabidopsis genes was determined by calculating Pearson correlation coefficients. To group MAPK signalling genes based on similarities in global regulation, we performed hierarchical clustering on the pairwise correlation values. This should allow inferring functional information from well-studied MAPK components to functionally uncharacterized ones. Statistical overrepresentation of specific gene ontology (GO) categories in the gene lists showing high expression correlation values with each of the MAPK components predicted biological themes for the gene functions. * The combination of these methods provides functional information for many uncharacterized MAPK genes, and a framework for complementary future experimental dissection of the function of this complex family.


Trends in Plant Science | 2003

Plant biotechnology and breeding: allied for years to come

Piero Morandini; Francesco Salamini

Plant metabolic engineering is lagging behind other kinds of genetic manipulation of plants. Creating metabolic pathways or improving their yields requires a better understanding of plant metabolism and of its regulation. Metabolic Control Analysis provides an interpretation of experimental failures and a guide for manipulators. It suggests also that there might be intrinsic limits to raising yields in already abundant products. At present, these limits can be dealt with more effectively by plant breeding.


Molecular Plant Pathology | 2012

OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast

Pamela Abbruscato; Tamás Nepusz; Luca Mizzi; Marcello Del Corvo; Piero Morandini; Irene Fumasoni; Corinne Michel; Alberto Paccanaro; Emmanuel Guiderdoni; Ulrich Schaffrath; Jean Benoit Morel; Pietro Piffanelli; Odile Faivre-Rampant

With the aim of identifying novel regulators of host and nonhost resistance to fungi in rice, we carried out a systematic mutant screen of mutagenized lines. Two mutant wrky22 knockout lines revealed clear-cut enhanced susceptibility to both virulent and avirulent Magnaporthe oryzae strains and altered cellular responses to nonhost Magnaporthe grisea and Blumeria graminis fungi. In addition, the analysis of the pathogen responses of 24 overexpressor OsWRKY22 lines revealed enhanced resistance phenotypes on infection with virulent M. oryzae strain, confirming that OsWRKY22 is involved in rice resistance to blast. Bioinformatic analyses determined that the OsWRKY22 gene belongs to a well-defined cluster of monocot-specific WRKYs. The co-regulatory analysis revealed no significant co-regulation of OsWRKY22 with a representative panel of OsWRKYs, supporting its unique role in a series of transcriptional responses. In contrast, inquiring a subset of biotic stress-related Affymetrix data, a large number of resistance and defence-related genes were found to be putatively co-expressed with OsWRKY22. Taken together, all gathered experimental evidence places the monocot-specific OsWRKY22 gene at the convergence point of signal transduction circuits in response to both host and nonhost fungi encountering rice plants.


Plant Physiology | 2007

Genomic Organization and Evolutionary Conservation of Plant D-Type Cyclins

Margit Menges; Giulio Pavesi; Piero Morandini; László Bögre; James Augustus Henry Murray

Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.


Molecular Plant | 2013

Microtubule Depolymerization Affects Endocytosis and Exocytosis in the Tip and Influences Endosome Movement in Tobacco Pollen Tubes

Aurora Irene Idilli; Piero Morandini; Elisabetta Onelli; Simona Rodighiero; Marco Caccianiga; Alessandra Moscatelli

Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exo-endocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exo-endocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. Fluorescence Recovery After Photobleaching (FRAP) experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM.


Frontiers in Plant Science | 2013

Searching iron sensors in plants by exploring the link among 2'-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency.

Gianpiero Vigani; Piero Morandini; Irene Murgia

Knowledge accumulated on the regulation of iron (Fe) homeostasis, its intracellular trafficking and transport across various cellular compartments and organs in plants; storage proteins, transporters and transcription factors involved in Fe metabolism have been analyzed in detail in recent years. However, the key sensor(s) of cellular plant “Fe status” triggering the long-distance shoot–root signaling and leading to the root Fe deficiency responses is (are) still unknown. Local Fe sensing is also a major task for roots, for adjusting the internal Fe requirements to external Fe availability: how such sensing is achieved and how it leads to metabolic adjustments in case of nutrient shortage, is mostly unknown. Two proteins belonging to the 2′-OG-dependent dioxygenases family accumulate several folds in Fe-deficient Arabidopsis roots. Such proteins require Fe(II) as enzymatic cofactor; one of their subgroups, the HIF-P4H (hypoxia-inducible factor-prolyl 4-hydroxylase), is an effective oxygen sensor in animal cells. We envisage here the possibility that some members of the 2′-OG dioxygenase family may be involved in the Fe deficiency response and in the metabolic adjustments to Fe deficiency or even in sensing Fe, in plant cells.


Journal of Plant Physiology | 2010

AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells

Delia Tarantino; Nadia Santo; Piero Morandini; Francesca Casagrande; Hans-Peter Braun; Jesco Heinemeyer; Gianpiero Vigani; Carlo Soave; Irene Murgia

In plants, the iron storage protein ferritin can be targeted to both chloroplasts and mitochondria. To investigate the role of Arabidopsis ATFER4 ferritin in mitochondrial iron trafficking, atfer4-1 and atfer4-2 mutant knock-outs for the AtFer4 gene were grown in heterotrophic suspension cultures. Both mutants showed altered cell size and morphology, reduced viability, higher H₂O₂ content and reduced O₂ consumption rates when compared to wt. Although no reduction in total ferritin or in mitochondrial ferritin was observed in atfer4 mutants, total iron content increased in atfer4 cells and in atfer4 mitochondria. Transcript correlation analysis highlighted a partial inverse relationship between the transcript levels of the mitochondrial ferric reductase oxidase FRO3, putatively involved in mitochondrial iron import/export, and AtFer4. Consistent with this, FRO3 transcript levels were higher in atfer4 cells. We propose that the complex molecular network maintaining Fe cellular homeostasis requires, in Arabidopsis heterotrophic cells, a proper balance of the different ferritin isoforms, and that alteration of this equilibrium, such as that occurring in atfer4 mutants, is responsible for an altered Fe homeostasis resulting in a change of intraorganellar Fe trafficking.


Plant Physiology and Biochemistry | 2011

Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism.

Delia Tarantino; Piero Morandini; Leonor Ramirez; Carlo Soave; Irene Murgia

Iron has a major role in mitochondrial as well as in chloroplast metabolism, however the processes involved in organelle iron transport in plants are only partially understood. To identify mitochondrial iron transporters in Arabidopsis, we searched for proteins homologous to the Danio rerio (zebrafish) Mitoferrin2 MFRN2, a mitochondrial iron importer in non-erythroid cells. Among the identified putative Arabidopsis mitoferrinlike proteins, we focused on that one encoded by At5g42130, which we named AtMfl1 (MitoFerrinLike1). AtMfl1 expression strongly correlates with genes coding for proteins involved in chloroplast metabolism. Such an unexpected result is supported by the identification by different research groups, of the protein encoded by At5g42130 and of its homologs from various plant species in the inner chloroplastic envelope membrane proteome. Notably, neither the protein encoded by At5g42130 nor its homologs from other plant species have been identified in the mitochondrial proteome. AtMfl1 gene expression is dependent on Fe supply: AtMfl1 transcript strongly accumulates under Fe excess, moderately under Fe sufficiency and weakly under Fe deficiency. In order to understand the physiological role of AtMfl1, we isolated and characterized two independent AtMfl1 KO mutants, atmfl1-1 and atmfl1-2: both show reduced vegetative growth. When grown under conditions of Fe excess, atmfl1-1 and atmfl1-2 mutants (seedlings, rosette leaves) contain less total Fe than wt and also reduced expression of the iron storage ferritin AtFer1. Taken together, these results suggest that Arabidopsis mitoferrinlike gene AtMfl1 is involved in Fe transport into chloroplasts, under different conditions of Fe supply and that suppression of its expression alters plant Fe accumulation in various developmental stages.

Collaboration


Dive into the Piero Morandini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Colombo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge