Piero Ruol
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Piero Ruol.
Journal of Waterway Port Coastal and Ocean Engineering-asce | 2013
Piero Ruol; Luca Martinelli; Paolo Pezzutto
AbstractThe aim of this paper is to define a simple and useful formula to predict wave transmission for a common type of floating breakwater (FB), supplied with two lateral vertical plates protruding downward, named π-type FB. Eight different models, with mass varying from 16 to 76 kg, anchored with chains, have been tested in the wave flume of the Maritime Laboratory of Padova University, under irregular wave conditions. Water elevation in front and behind the structure has been measured with two arrays of four wave gauges. Our starting point for the prediction of wave transmission was the classical relationship established by Macagno in 1954. His relationship was derived for a box-type fixed breakwater assuming irrotational flow. Consequently, he significantly underestimated transmission for short waves and large drafts. This paper proposes an empirical modification of his relationship to properly fit the experimental results and a standardized plotting system of the transmission coefficient, based on a...
Proceedings of the 5th Coastal Structures International Conference, CSt07 | 2009
Luca Martinelli; Barbara Zanuttigh; Piero Ruol
Aim of this contribution is to investigate the relevance of the layout on the performance of floating breakwater schemes under oblique waves. An experimental investigation was carried out in the wave basin of the Maritime Laboratory of Padua University, Italy. The facility dimensions are 3.8m x 20.6m x 0.8m. Several regular and irregular longcrested waves were generated and two different layouts (Iand J-shaped) and three obliquities (0°, 30°, 60°) were tested. With increasing wave obliquity, wave transmission decreases, mooring forces due to snapping decrease and link forces slightly increase. The J-shaped configuration determines basically the same effects with regards to both transmission and loads. The maxima of link forces are not much greater than the average loads and this is relevant for fatigue and reliability considerations.
Proceedings of the 31st International Conference | 2009
Piero Ruol; Luca Martinelli; Barbara Zanuttigh
This note presents further experimental evidence on the effect of the layout on the mooring forces of floating breakwaters under irregular waves. The latest results, here summarized, have been obtained by means of physical model tests carried out on an L-shaped layout and are compared to data previously published by the authors. The experimental facility is located at the University of Padova, Italy. Results are given in non-dimensional form and concern the transmission phenomenon and the loads on mooring and tie rods interconnecting adjacent modules. It is confirmed that under more complex layouts, the wave transmission increases, due to smaller dissipation, maximum mooring forces decrease and link forces largely increase.
21st International Conference on Coastal Engineering | 1989
Aronne Armanini; Piero Ruol
The Labrador Sea Extreme Waves Experiment (LEWEX), is an international basic research programme concerned with full-scale measurements, analysis, modelling and simulation in test basins of 3-dimensional seas. The research is carried out in order to assess the significance of 3-dimensional sea states in engineering applications. The first phase of the programme full scale wave measurements in the North Atlantic Ocean was performed at a site and time that had a high probability of encountering severe sea states. The present publication shows examples of measured bi-modal directional sea spectra obtained with the WAVESCAN buoy and directional sea spectra measured with an airborne Synthetic Aperture Radar (SAR). Directional spectra of gravity waves are obtained with the SAR both in open waters and below an ice cover. Further work is needed in order to verify SAR-measurements with in-situ observations. In-situ measured directional spectra are also compared with hindcast spectra from the 3G-WAM model. Hindcast significant wave heights were found to be lower than the in-situ measurements.The littoral drift model developed at DHI and ISVA, see Deigaard et al. (1986b) has been extended to include the effects of the irregularity of the waves, of a coastal current and a wind acting on the surf zone. Further, a mathematical model to simulate the near-shore current pattern along a barred coast with rip channels has been developed. The influence on the littoral drift of the irregularity of waves, wind, coastal current, and rip channels is discussed. It is concluded that irregularity of waves and presence of rip channels must be considered while coastal current and wind action are of minor importance.At present, the Prodhoe Bay oil field in Alaska contributes a substantial amount of the domestic oil production of the United States. Oil is also expected to be present on the continental shelf of Alaska, and it is estimated that approximatedly 28 percent of the total U. S. reserve is located beneath the shallow ice covered seas of the Alaskan continental shelf. To expolre and to exploit these oil rich resources, engineers are confronted with hostile oceanographic conditions such as high tides, waves, strong currents and sea ice. The same area is also rich in fishery resources. Being one of the most productive fishing grounds in the nothern Pacific, the potential ecological impact due to an oil spill is of a major concern. This paper describes the methologies used for the development of a modeling system for the oil risk analysis. The system is designed with generality in mind so it can be used for other coastal areas. The development of three dimensional models used in the modeling system described here have been published in the earlier International Coastal Engineering Conferences (Liu and Leendertse, 1982, 1984, 1986) and a report published recently by RAND (Liu and Leendertse, 1987). In the oil-spill risk analysis, these three dimensional hydrodynamic models are coupled to a two-dimensional stochastic weather model and an oil weathering model.The two projects (LUBIATOWO 79 and LUBIATOWO 86) were aimed at study pore pressure behaviour in natural sand bed in the coastal zone of the Baltic sea under the action of storm waves. During both projects, the wave induced pore pressures at the various levels in the sea bed were measured. The collected data were used to verify the applicability of the various theoretical approaches. In the conclusion, the range of the application of the particular analytical method is given.The rapid recession of the shingle bank of Hurst Beach (up to 3.5m/yr) makes it an excellent natural laboratory for the study of the factors which influence the stability of shingle beaches. Studies have included: the significance of long period, high energy, swell waves the classification and quantification of overwash processes run-up and seepage characteristics the effect of settlement of the underlying strata and the implications for practices in shingle nourishment. The studies have revealed the distinctive character of shingle beaches as compared with the more fully researched sand beaches. More detailed research on shingle beaches is justified particularly in relation to (i) the run-up characteristics including its interaction with swash cusps and (ii) the influence of the subsidiary sand fraction on the beach characteristics.Environmental assessment, engineering studies and designs were completed for a new 26.5 m3/s seawater intake system in the Persian Gulf. The original intake facility consisted of a curved, 60m breakwater with one end attached to the shoreline, a settling basin immediately adjacent to the shoreline and dredged to a maximum depth of approximately 5m, and a pumphouse structure located on shore such that the seaward wall formed one side of the settling basin. The facility located on an island in the Gulf, which served multiple seawater uses, had experienced both structural and operational problems, the latter consisting principally of excessive ingestion of sediment and seaweed. These factors plus the requirement for additional demands for seawater beyond plant capacity caused the owner to initiate a study of alternative intake systems, produce a design for the most effective solution and construct the new intake system.A two-dimensional wave prediction model suitable for use on personal computers is described. The model requires the twodimensional time-dependent wind field as input. Output consists of wave height, wave period, and wave direction estimates at all grid points on a computational grid representing an enclosed or semi-closed basin. Model predictions compare favorably with observations from a wave research tower in Lake Erie. A formula is provided to estimate how long a model simulation would take on a personal computer given the surface area of the computational domain, the grid size, and the computer clock speed.Cullera Bay is a neritic ecosystem placed on the Spanish Mediterranean Littoral largely influenced by the Jucar River, that brings about lower salinities than surrounding waters, and broad variations of its values. An extensive research, with 9 samplings throughout the year, was carried out, measuring both physical and chemical parameters, and the planktonic communities. The trophic status of the ecosystem, the spatial and temporal variations of the nutrients and the planktonic communities were studied, evaluating the influence of the river loads and the littoral dynamics. Some essential basis to allow a suitable emplacement of waste waters disposals along the Valencian littoral are set up in order to minimize the gradual eutrophication of this coast.In the last two years a whole of studies was realized in order to determine precise solutions to the regeneration of Villajoyosas beach, in the Spanish mediterranean coast. Investigations were carried out to the surrounding coastal areas based in field investigations and laboratory analyses of the beaches materials.
Archive | 2015
Hans F. Burcharth; Barbara Zanuttigh; Tom Andersen; Javier L. Lara; Gosse Jan Steendam; Piero Ruol; Philippe Sergent; Rafał Ostrowski; Rodolfo Silva; Luca Martinelli; Jørgen Harck Nørgaard; Edgar Mendoza; David Simmonds; Nino Ohle; Jens Kappenberg; Shunqi Pan; Dan Kim Nguyen; Erik Toorman; Panayotis Prinos; Simon Hoggart; Zhongyuan Chen; Danuta Piotrowska; Zbigniew Pruszak; Jan Schönhofer; Marek Skaja; Piotr Szmytkiewicz; Marek Szmytkiewicz; Igor O. Leont'yev; Elisa Angelelli; Sara Mizar Formentin
Engineering solutions are widely used for the mitigation of flood and erosion risks and have new challenges because of the expected effects induced by climate change in particular sea level rise and increase of storminess. This chapter describes both active methods of mitigation based on the reduction of the incident wave energy, such as the use of wave energy converters, floating breakwaters and artificial reefs, and passive methods, consisting of increase in overtopping resistance of dikes, improvement of resilience of breakwaters against failures, and the use of beach nourishment as well as tailored dredging operations.Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, Coastal Risk Management in a Changing Climate provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments such as deltas, estuaries and wetlands, where many large cities and industrial areas are located. * Integrated risk assessment tools for considering the effects of climate change and related uncertainties* Presents latest insights on coastal engineering defenses* Provides integrated guidelines for setting up optimal mitigation measures* Provides directly applicable tools for the design of mitigation measures* Highlights socio-economic perspectives in coastal mitigation
Coastal Risk Management in a Changing Climate | 2015
Hans F. Burcharth; Barbara Zanuttigh; Tom Andersen; Javier L. Lara; Gosse Jan Steendam; Piero Ruol; Philippe Sergent; Rafał Ostrowski; Rodolfo Silva; Luca Martinelli; Jørgen Harck Nørgaard; Edgar Mendoza; David Simmonds; Nino Ohle; Jens Kappenberg; Shunqi Pan; Dan Kim Nguyen; Erik Toorman; Panayotis Prinos; Simon Hoggart; Zhongyuan Chen; Danuta Piotrowska; Zbigniew Pruszak; Jan Schönhofer; Marek Skaja; Piotr Szmytkiewicz; Marek Szmytkiewicz; Igor Leont’yev; Elisa Angelelli; Sara Mizar Formentin
Engineering solutions are widely used for the mitigation of flood and erosion risks and have new challenges because of the expected effects induced by climate change in particular sea level rise and increase of storminess. This chapter describes both active methods of mitigation based on the reduction of the incident wave energy, such as the use of wave energy converters, floating breakwaters and artificial reefs, and passive methods, consisting of increase in overtopping resistance of dikes, improvement of resilience of breakwaters against failures, and the use of beach nourishment as well as tailored dredging operations.Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, Coastal Risk Management in a Changing Climate provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments such as deltas, estuaries and wetlands, where many large cities and industrial areas are located. * Integrated risk assessment tools for considering the effects of climate change and related uncertainties* Presents latest insights on coastal engineering defenses* Provides integrated guidelines for setting up optimal mitigation measures* Provides directly applicable tools for the design of mitigation measures* Highlights socio-economic perspectives in coastal mitigation
Archive | 2008
Luca Martinelli; Piero Ruol
This study is motivated by the need of optimising generic floating wave energy converters based on the oscillating water column (OWC), principle in the framework of a new FP7 project (CORES) involving DISTART. Similarly IMAGE, that deals since long with floating breakwaters, is planning to further investigate this kind of device. The key aspect of our interest is the OWC dynamic, which affects the efficiency of the energy conversion. The dynamic response of a floating body is a typical two-way interaction problem: the body dynamics is determined by the wave pressure and the body movements essentially influence the wave and velocity field. The OWC under exam is moored with piles, so that some of the degrees of freedom of the system are restrained by the anchoring device: only heave and, to some extent, roll, is possible. This simplification of the problem, that in origin has 6 degrees of freedom, allows for the set up of an easier model, which is also appropriate for didactic purposes. This problem has been solved for instance in connection to floating breakwaters (see McCartney, 1985 for a description of this kind of structure) in a simplified form. Usually waves are assumed to propagate in an inviscid irrotational flow and behave as if having an infinitesimal height, whereas the floating body is assumed as rigid. After being extensively studied in the decade 75-85, mainly in connection with floating breakwater performance, the floating body simulation is now the subject of several new papers (according to the Sirius database, starting in 1965, 50% of journal papers regarding floating breakwater dynamics are written after 2001). The Authors compared experiments (Ruol and Martinelli, 2007) to simulations based on such simple hypotheses and found significant differences, almost 10%, which are too high for the purpose of optimising OWC devices. It seemed that wave non-linearities were the main cause of such dissimilarities and the need for a further investigation was established. Aim of this note is to evaluate the floating body dynamics under non-linear waves in 2DV (2 Dimensions, Vertical) conditions. A novel and simple model is set up that considers the exchange of forces between the (rigid) body and a fluid, actually sea water, described by equations able to account for all (wave) non-linearities. The Navier Stokes (NS) equations are solved in a moving grid through a finite element discretisation by means of the Comsol Multiphysics engine. The modeled equations are
Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B | 2009
Luca Martinelli; Piero Ruol; Barbara Zanuttigh
Aim of this contribution is to examine the load on the mooring and on the tie rods of a set of interconnected floating bodies under extreme waves, with particular attention to the layout obliquity. Tests carried out at the IMAGE department of Padova University are briefly presented. It is doubtful how to scale the laboratory tests in the presence of impulsive loads on semi-taught moorings. In order to find proper scaling laws, a numerical model is presented where the chain and the floating body are studied as a lumped mass system. Results, compared to available laboratory tests are encouraging and it appears that the main processes in presence of impulses are correctly represented by the model. Model calibration will be carried out shortly, on the basis of specific ongoing tests on floating Wave Energy Converters.Copyright
26th International Conference on Coastal Engineering | 1999
Massimo Tondello; Piero Ruol; Mauro Selavo; Michele Capobianco
Detailed studies have been undertaken to assist in the design of major extensions to the port of Haifa. Both numerical and physical model studies were done to optimise the mooring conditions vis a vis the harbour approach and entrance layout. The adopted layout deviates from the normal straight approach to the harbour entrance. This layout, together with suitable aids to navigation, was found to be nautically acceptable, and generally better with regard to mooring conditions, on the basis of extensive nautical design studies.Hwa-Lian Harbour is located at the north-eastern coast of Taiwan, where is relatively exposed to the threat of typhoon waves from the Pacific Ocean. In the summer season, harbour resonance caused by typhoon waves which generated at the eastern ocean of the Philippine. In order to obtain a better understanding of the existing problem and find out a feasible solution to improve harbour instability. Typhoon waves measurement, wave characteristics analysis, down-time evaluation for harbour operation, hydraulic model tests are carried out in this program. Under the action of typhoon waves, the wave spectra show that inside the harbors short period energy component has been damped by breakwater, but the long period energy increased by resonance hundred times. The hydraulic model test can reproduce the prototype phenomena successfully. The result of model tests indicate that by constructing a jetty at the harbour entrance or building a short groin at the corner of terminal #25, the long period wave height amplification agitated by typhoon waves can be eliminated about 50%. The width of harbour basin 800m is about one half of wave length in the basin for period 140sec which occurs the maximum wave amplification.Two-stage methodology of shoreline prediction for long coastal segments is presented in the study. About 30-km stretch of seaward coast of the Hel Peninsula was selected for the analysis. In 1st stage the shoreline evolution was assessed ignoring local effects of man-made structures. Those calculations allowed the identification of potentially eroding spots and the explanation of causes of erosion. In 2nd stage a 2-km eroding sub-segment of the Peninsula in the vicinity of existing harbour was thoroughly examined including local man-induced effects. The computations properly reproduced the shoreline evolution along this sub-segment over a long period between 1934 and 1997.In connection with the dredging and reclamation works at the Oresund Link Project between Denmark and Sweden carried out by the Contractor, Oresund Marine Joint Venture (OMJV), an intensive spill monitoring campaign has been performed in order to fulfil the environmental requirements set by the Danish and Swedish Authorities. Spill in this context is defined as the overall amount of suspended sediment originating from dredging and reclamation activities leaving the working zone. The maximum spill limit is set to 5% of the dredged material, which has to be monitored, analysed and calculated within 25% accuracy. Velocity data are measured by means of a broad band ADCP and turbidity data by four OBS probes (output in FTU). The FTUs are converted into sediment content in mg/1 by water samples. The analyses carried out, results in high acceptance levels for the conversion to be implemented as a linear relation which can be forced through the origin. Furthermore analyses verifies that the applied setup with a 4-point turbidity profile is a reasonable approximation to the true turbidity profile. Finally the maximum turbidity is on average located at a distance 30-40% from the seabed.
Coastal Engineering | 2014
Edgar Mendoza; Rodolfo Silva; Barbara Zanuttigh; Elisa Angelelli; Tom Andersen; Luca Martinelli; Jørgen Harck Nørgaard; Piero Ruol