Pierre-Alain Girod
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre-Alain Girod.
Journal of Biotechnology | 2001
Monique Zahn-Zabal; Michel Kobr; Pierre-Alain Girod; Markus Imhof; Philippe Chatellard; Maria De Jesus; Florian M. Wurm; Nicolas Mermod
One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.
Nature Methods | 2007
Pierre-Alain Girod; Duc-Quang Nguyen; David Calabrese; Stefania Puttini; Mélanie Grandjean; Danielle Martinet; Alexandre Regamey; Damien Saugy; Jacques S. Beckmann; Philipp Bucher; Nicolas Mermod
Gene transfer in eukaryotic cells and organisms suffers from epigenetic effects that result in low or unstable transgene expression and high clonal variability. Use of epigenetic regulators such as matrix attachment regions (MARs) is a promising approach to alleviate such unwanted effects. Dissection of a known MAR allowed the identification of sequence motifs that mediate elevated transgene expression. Bioinformatics analysis implied that these motifs adopt a curved DNA structure that positions nucleosomes and binds specific transcription factors. From these observations, we computed putative MARs from the human genome. Cloning of several predicted MARs indicated that they are much more potent than the previously known element, boosting the expression of recombinant proteins from cultured cells as well as mediating high and sustained expression in mice. Thus we computationally identified potent epigenetic regulators, opening new strategies toward high and stable transgene expression for research, therapeutic production or gene-based therapies.
The Plant Cell | 1999
Pierre-Alain Girod; Hongyong Fu; Jean-Pierre Zryd; Richard D. Vierstra
The 26S proteasome, a multisubunit complex, is the primary protease of the ubiquitin-mediated proteolytic system in eukaryotes. We have recently characterized MCB1 (RPN10), a subunit of the 26S complex that has affinity for multiubiquitin chains in vitro and as a result may function as a receptor for ubiquitinated substrates. To define the role of MCB1 further, we analyzed its function in Physcomitrella patens by generating MCB1 gene disruptions using homologous recombination. PpMCB1, which is 50 to 75% similar to orthologs from other eukaryotes, is present in the 26S proteasome complex and has a similar affinity for multiubiquitin chains, using a conserved hydrophobic domain within the C-terminal half of the polypeptide. Unlike yeast Δmcb1 strains, which grow normally, P. patens Δmcb1 strains are viable but are under developmental arrest, generating abnormal caulonema that are unable to form buds and gametophores. Treatment with auxin and cytokinin restored bud formation and subsequent partial development of gametophores. Complementation of a Δmcb1 strain with mutated versions of PpMCB1 revealed that the multiubiquitin chain binding site is not essential for the wild-type phenotype. These results show that MCB1 has an important function in the 26S proteasome of higher order eukaryotes in addition to its ability to bind multiubiquitin chains, and they provide further support for a role of the ubiquitin/26S proteasome proteolytic pathway in plant developmental processes triggered by hormones.
Plant Cell Tissue and Organ Culture | 1991
Pierre-Alain Girod; Jean-Pierre Zryd
Red beet cell lines exhibiting a range of cell colours were generated from secondary callus via specific induction methods. Phenotype colour ranged from white/green through yellow, orange and red to deep violet, representing all types of pigments found in red beet plant. Specific phenotypes could only be obtained through specific induction sequences and once established were stabilised by cultivation on a maintenance medium. The ratio of auxin (2,4-D) to cytokinin (6-BAP) was an important factor in the control of these processes. All coloured phenotypes were linked, but could be classified into two main groups, one yellow-red and the other orange-violet, according to their different cellular morphologies. A certain amount of instability still existed within each group. Modification of the growth regulator composition could be used to interchange specific combinations of coloured phenotypes, depending upon the initial state of cellular differentiation. Use of the DNA-methylation inhibitor 5-azacytidine demonstrated that methylation plays a key role in the repression of genes encoding enzymes involved in betacyanin biosynthesis. Furthermore, the poly(ADP-ribose) polymerase inhibitor 3-methoxybenzamide blocked the induction of the same gene set in a concentration dependent manner without affecting cell growth.
Phytochemistry | 1991
Pierre-Alain Girod; Jean-Pierre Zryd
Abstract 3,4-Dihydroxyphenylalanine 4,5-dioxygenase, a central enzyme in the biogenesis of betalains, has been purified from the mushroom Amanita muscaria. Like other extradiol-cleaving dioxygenases, this enzyme is an oligomer; however, DOPA 4,5-dioxygenase is composed of varying number of an identical subunit of Mr 22 000. It is inhibited by cyanide, diethylpyrocarbonate and various nitrogen-containing ion chelating agents. The enzyme does not exhibit a strict specificity for DOPA. Other p-dihydric aromatic compounds such as dopamine and catechol are also converted to α-hydroxymuconic e-semialdehyde derivatives. This is the first report of an enzyme involved in the metabolism of betalain pigments.
Nucleic Acids Research | 2011
Mélanie Grandjean; Pierre-Alain Girod; David Calabrese; Kaja Kostyrko; Marianne Wicht; Florence Yerly; Christian Mazza; Jacques S. Beckmann; Danielle Martinet; Nicolas Mermod
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Methods of Molecular Biology | 2012
Niamh Harraghy; Montserrat Buceta; Alexandre Regamey; Pierre-Alain Girod; Nicolas Mermod
Chinese hamster ovary (CHO) cells are the system of choice for the production of complex molecules, such as monoclonal antibodies. Despite significant progress in improving the yield from these cells, the process to the selection, identification, and maintenance of high-producing cell lines remains cumbersome, time consuming, and often of uncertain outcome. Matrix attachment regions (MARs) are DNA sequences that help generate and maintain an open chromatin domain that is favourable to transcription and may also facilitate the integration of several copies of the transgene. By incorporating MARs into expression vectors, an increase in the proportion of high-producer cells as well as an increase in protein production are seen, thereby reducing the number of clones to be screened and time to production by as much as 9 months. In this chapter, we describe how MARs can be used to increase transgene expression and provide protocols for the transfection of CHO cells in suspension and detection of high-producing antibody cell clones.
Journal of Biotechnology | 2011
Niamh Harraghy; Alexandre Regamey; Pierre-Alain Girod; Nicolas Mermod
Matrix attachment regions are DNA sequences found throughout eukaryotic genomes that are believed to define boundaries interfacing heterochromatin and euchromatin domains, thereby acting as epigenetic regulators. When included in expression vectors, MARs can improve and sustain transgene expression, and a search for more potent novel elements is therefore actively pursued to further improve recombinant protein production. Here we describe the isolation of new MARs from the mouse genome using a modified in silico analysis. One of these MARs was found to be a powerful activator of transgene expression in stable transfections. Interestingly, this MAR also increased GFP and/or immunoglobulin expression from some but not all expression vectors in transient transfections. This effect was attributed to the presence or absence of elements on the vector backbone, providing an explanation for earlier discrepancies as to the ability of this class of elements to affect transgene expression under such conditions.
Plant Molecular Biology | 2007
Mattias Thelander; Anders Nilsson; Tina Olsson; Monika Johansson; Pierre-Alain Girod; Didier G. Schaefer; Jean-Pierre Zryd; Hans Ronne
The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.
PLOS ONE | 2013
Déborah Ley; Niamh Harraghy; Valérie Le Fourn; Solenne Bire; Pierre-Alain Girod; Alexandre Regamey; Florence Rouleux-Bonnin; Yves Bigot; Nicolas Mermod
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1–68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1–68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2–4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.