Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Artoisenet is active.

Publication


Featured researches published by Pierre Artoisenet.


Journal of High Energy Physics | 2013

Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations

Pierre Artoisenet; Rikkert Frederix; Olivier Mattelaer; Robbert Rietkerk

A bstractWe present a general method that allows one to decay narrow resonances in Les Houches Monte Carlo events in an efficient and accurate way. The procedure preserves both spin correlation and finite width effects to a very good accuracy, and is therefore particularly suited for the decay of resonances in production events generated at next-to-leading-order accuracy. The method is implemented as a generic tool in the Mad-Graph5 framework, giving access to a very large set of possible applications. We illustrate the validity of the method and the code by applying it to the case of single top and top quark pair production, and show its capabilities on the case of top quark pair production in association with a Higgs boson.


Journal of High Energy Physics | 2013

A framework for Higgs characterisation

Pierre Artoisenet; P. de Aquino; Federico Demartin; Rikkert Frederix; Stefano Frixione; Fabio Maltoni; M. K. Mandal; Prakash Mathews; Kentarou Mawatari; V. Ravindran; Satyajit Seth; Paolo Torrielli; Marco Zaro

A bstractWe introduce a framework, based on an effective field theory approach, that allows one to perform characterisation studies of the boson recently discovered at the LHC, for all the relevant channels and in a consistent, systematic and accurate way. The production and decay of such a boson with various spin and parity assignments can be simulated by means of multi-parton, tree-level matrix elements and of next-to-leading order QCD calculations, both matched with parton showers. Several sample applications are presented which show, in particular, that beyond-leading-order effects in QCD have nontrivial phenomenological implications.


Physical Review Letters | 2008

Upsilon production at Fermilab Tevatron and LHC energies.

Pierre Artoisenet; Fabio Maltoni; J.P. Lansberg; John M. Campbell; Francesco Tramontano

We update the theoretical predictions for direct Y(nS) hadroproduction in the framework of NRQCD. We show that the next-to-leading order corrections in alpha_s to the color-singlet transition significantly raise the differential cross section at high pT and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the NLO yield and the cross section measurements at the Tevatron, we evaluate the leading part of the alpha_s^5 contributions, namely those coming from Y(nS) associated with three light partons. The differential color-singlet cross section at alpha_s^5 is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Y(nS) is longitudinal. We also present our predictions for Y(nS) production at the LHC.We update the theoretical predictions for direct Upsilon(nS) hadroproduction in the framework of nonrelativistic QCD. We show that the next-to-leading order corrections in alpha(S) to the color-singlet transition significantly raise the differential cross section at high p(T) and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the next-to-leading order yield and the cross-section measurements at the Fermilab Tevatron, we evaluate the leading part of the alpha(S)(5) contributions, namely, those coming from Upsilon(nS) associated with three light partons. The differential color-singlet cross section at alpha(S)(5) is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Upsilon(nS) is longitudinal. We also present our predictions for Upsilon(nS) production at the LHC.


Physics Letters B | 2007

Hadroproduction of J/psi and Upsilon in association with a heavy-quark pair

Pierre Artoisenet; J.P. Lansberg; Fabio Maltoni

We calculate the cross sections for the direct hadroproduction of J/psi and Upsilon associated with a heavy-quark pair of the same flavour at leading order in alpha_S and v in NRQCD. These processes provide an interesting signature that could be studied at the Tevatron and the LHC and also constitute a gauge-invariant subset of the NLO corrections to the inclusive hadroproduction of J/psi and Upsilon. We find that the fragmentation approximation commonly used to evaluate the contribution of these processes to the inclusive quarkonium production sizeably underestimates the exact calculation in the kinematical region accessible at the Tevatron. Both J/psi and Upsilon are predicted to be unpolarised, independently of their transverse momentum. Comment: 13 pages, 5 figures


Physical Review Letters | 2008

Y Production at Fermilab Tevatron and LHC Energies

Pierre Artoisenet; John M. Campbell; J.P. Lansberg; Fabio Maltoni; Francesco Tramontano

We update the theoretical predictions for direct Y(nS) hadroproduction in the framework of NRQCD. We show that the next-to-leading order corrections in alpha_s to the color-singlet transition significantly raise the differential cross section at high pT and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the NLO yield and the cross section measurements at the Tevatron, we evaluate the leading part of the alpha_s^5 contributions, namely those coming from Y(nS) associated with three light partons. The differential color-singlet cross section at alpha_s^5 is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Y(nS) is longitudinal. We also present our predictions for Y(nS) production at the LHC.We update the theoretical predictions for direct Upsilon(nS) hadroproduction in the framework of nonrelativistic QCD. We show that the next-to-leading order corrections in alpha(S) to the color-singlet transition significantly raise the differential cross section at high p(T) and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the next-to-leading order yield and the cross-section measurements at the Fermilab Tevatron, we evaluate the leading part of the alpha(S)(5) contributions, namely, those coming from Upsilon(nS) associated with three light partons. The differential color-singlet cross section at alpha(S)(5) is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Upsilon(nS) is longitudinal. We also present our predictions for Upsilon(nS) production at the LHC.


Physical Review Letters | 2008

Upsilon production at the Tevatron and the LHC

Pierre Artoisenet; John M. Campbell; J. P. Lansberg; Fabio Maltoni; Francesco Tramontano

We update the theoretical predictions for direct Y(nS) hadroproduction in the framework of NRQCD. We show that the next-to-leading order corrections in alpha_s to the color-singlet transition significantly raise the differential cross section at high pT and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the NLO yield and the cross section measurements at the Tevatron, we evaluate the leading part of the alpha_s^5 contributions, namely those coming from Y(nS) associated with three light partons. The differential color-singlet cross section at alpha_s^5 is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Y(nS) is longitudinal. We also present our predictions for Y(nS) production at the LHC.We update the theoretical predictions for direct Upsilon(nS) hadroproduction in the framework of nonrelativistic QCD. We show that the next-to-leading order corrections in alpha(S) to the color-singlet transition significantly raise the differential cross section at high p(T) and substantially affect the polarization of the Upsilon. Motivated by the remaining gap between the next-to-leading order yield and the cross-section measurements at the Fermilab Tevatron, we evaluate the leading part of the alpha(S)(5) contributions, namely, those coming from Upsilon(nS) associated with three light partons. The differential color-singlet cross section at alpha(S)(5) is in substantial agreement with the data, so that there is no evidence for the need of color-octet contributions. Furthermore, we find that the polarization of the Upsilon(nS) is longitudinal. We also present our predictions for Upsilon(nS) production at the LHC.


Physical Review Letters | 2013

Unravelling tt¯h via the Matrix Element Method

Pierre Artoisenet; Priscila de Aquino; Fabio Maltoni; Olivier Mattelaer

Associated production of the Higgs boson with a top-antitop pair is a key channel to gather further information on the nature of the newly discovered boson at the LHC. Experimentally, however, its observation is very challenging due to the combination of small rates, difficult multijet final states, and overwhelming backgrounds. In the standard model, the largest number of events is expected when h→bb, giving rise to a W+ W- bbbb signature, deluged in tt + jets. A promising strategy to improve the sensitivity is to maximally exploit the theoretical information on the signal and background processes by means of the matrix element method. We show how, despite the complexity of the final state, the method can be efficiently applied to discriminate the signal against combinatorial and tt + jets backgrounds. Remarkably, we find that a moderate integrated luminosity in the next LHC run will be enough to make the signature involving both Ws decaying leptonically as sensitive as the single-lepton one.


Physical Review Letters | 2013

Unravelling

Pierre Artoisenet; Priscila de Aquino; Fabio Maltoni; Olivier Mattelaer

Associated production of the Higgs boson with a top-antitop pair is a key channel to gather further information on the nature of the newly discovered boson at the LHC. Experimentally, however, its observation is very challenging due to the combination of small rates, difficult multijet final states, and overwhelming backgrounds. In the standard model, the largest number of events is expected when h→bb, giving rise to a W+ W- bbbb signature, deluged in tt + jets. A promising strategy to improve the sensitivity is to maximally exploit the theoretical information on the signal and background processes by means of the matrix element method. We show how, despite the complexity of the final state, the method can be efficiently applied to discriminate the signal against combinatorial and tt + jets backgrounds. Remarkably, we find that a moderate integrated luminosity in the next LHC run will be enough to make the signature involving both Ws decaying leptonically as sensitive as the single-lepton one.


Journal of High Energy Physics | 2008

t\bar{t}h

Pierre Artoisenet; Fabio Maltoni; T. Stelzer

We present a simple method to automatically evaluate arbitrary tree-level amplitudes involving the production or decay of a heavy quark pair QQbar in a generic {2S+1}L_J^[1,8] state, i.e., the short distance coefficients appearing in the NRQCD factorization formalism. Our approach is based on extracting the relevant contributions from the open heavy quark-antiquark amplitudes through an expansion with respect to the quark-antiquark relative momentum and the application of suitable color and spin projectors. To illustrate the capabilities of the method and its implementation in MadGraph a few applications to quarkonium collider phenomenology are presented. Comment: 17 pages, 7 figures


arXiv: High Energy Physics - Phenomenology | 2008

via the matrix element method

J. P. Lansberg; A. Rakotozafindrabe; Pierre Artoisenet; D. Blaschke; Joseph Cugnon; D. d’Enterria; A. C. Kraan; F. Maltoni; Dariusz Prorok; Helmut Satz

We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledge, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.

Collaboration


Dive into the Pierre Artoisenet's collaboration.

Top Co-Authors

Avatar

Fabio Maltoni

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Mattelaer

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Priscila de Aquino

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Demartin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jacques Weyers

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge