Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Baldet is active.

Publication


Featured researches published by Pierre Baldet.


Plant Physiology | 2007

Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato.

Moftah Alhagdow; Fabien Mounet; Louise Gilbert; Adriano Nunes-Nesi; Virginie Garcia; Daniel Just; Johann Petit; Bertrand Beauvoit; Alisdair R. Fernie; Pierre Baldet

l-Galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) catalyzes the last step in the main pathway of vitamin C (l-ascorbic acid) biosynthesis in higher plants. In this study, we first characterized the spatial and temporal expression of SlGalLDH in several organs of tomato (Solanum lycopersicum) plants in parallel with the ascorbate content. P35S:SlgalldhRNAi silenced transgenic tomato lines were then generated using an RNAi strategy to evaluate the effect of any resulting modification of the ascorbate pool on plant and fruit development. In all P35S:SlgalldhRNAi plants with reduced SlGalLDH transcript and activity, plant growth rate was decreased. Plants displaying the most severe effects (dwarf plants with no fruit) were excluded from further analysis. The most affected lines studied exhibited up to an 80% reduction in SlGalLDH activity and showed a strong reduction in leaf and fruit size, mainly as a consequence of reduced cell expansion. This was accompanied by significant changes in mitochondrial function and altered ascorbate redox state despite the fact that the total ascorbate content remained unchanged. By using a combination of transcriptomic and metabolomic approaches, we further demonstrated that several primary, like the tricarboxylic acid cycle, as well as secondary metabolic pathways related to stress response were modified in leaves and fruit of P35S:SlgalldhRNAi plants. When taken together, this work confirms the complexity of ascorbate regulation and its link with plant metabolism. Moreover, it strongly suggests that, in addition to ascorbate synthesis, GalLDH could play an important role in the regulation of cell growth-related processes in plants.


Plant Physiology | 2005

Changes in Transcriptional Profiles Are Associated with Early Fruit Tissue Specialization in Tomato

Martine Lemaire-Chamley; Johann Petit; Virginie Garcia; Daniel Just; Pierre Baldet; Véronique Germain; Mathilde Fagard; Mariam Mouassite; Catherine Cheniclet

The cell expansion phase contributes in determining the major characteristics of a fleshy fruit and represents two-thirds of the total fruit development in tomato (Solanum lycopersicum). So far, it has received very little attention. To evaluate the interest of a genomic scale approach, we performed an initial sequencing of approximately 1,200 cell expansion stage-related sequence tags from tomato fruit at 8, 12, and 15 d post anthesis. Interestingly, up to approximately 35% of the expressed sequence tags showed no homology with available tomato expressed sequence tags and up to approximately 21% with any known gene. Microarrays spotted with expansion phase-related cDNAs and other fruit cDNAs involved in various developmental processes were used (1) to profile gene expression in developing fruit and other plant organs and (2) to compare two growing fruit tissues engaged mostly in cell division (exocarp) or in cell expansion (locular tissue surrounding the seeds). Reverse transcription-polymerase chain reaction analysis was further used to confirm microarray results and to specify expression profiles of selected genes (24) in various tissues from expanding fruit. The wide range of genes expressed in the exocarp is consistent with a protective function and with a high metabolic activity of this tissue. In addition, our data show that the expansion of locular cells is concomitant with the expression of genes controlling water flow, organic acid synthesis, sugar storage, and photosynthesis and suggest that hormones (auxin and gibberellin) regulate this process. The data presented provide a basis for tissue-specific analyses of gene function in growing tomato fruit.


Plant Journal | 2009

GDP‐d‐mannose 3,5‐epimerase (GME) plays a key role at the intersection of ascorbate and non‐cellulosic cell‐wall biosynthesis in tomato

Louise Gilbert; Moftah Alhagdow; Adriano Nunes-Nesi; Bernard Quemener; Fabienne Guillon; Brigitte Bouchet; Mireille Faurobert; Barbara Gouble; David Page; Virginie Garcia; Johann Petit; Rebecca Stevens; Mathilde Causse; Alisdair R. Fernie; Marc Lahaye; Pierre Baldet

The GDP-D-mannose 3,5-epimerase (GME, EC 5.1.3.18), which converts GDP-d-mannose to GDP-l-galactose, is generally considered to be a central enzyme of the major ascorbate biosynthesis pathway in higher plants, but experimental evidence for its role in planta is lacking. Using transgenic tomato lines that were RNAi-silenced for GME, we confirmed that GME does indeed play a key role in the regulation of ascorbate biosynthesis in plants. In addition, the transgenic tomato lines exhibited growth defects affecting both cell division and cell expansion. A further remarkable feature of the transgenic plants was their fragility and loss of fruit firmness. Analysis of the cell-wall composition of leaves and developing fruit revealed that the cell-wall monosaccharide content was altered in the transgenic lines, especially those directly linked to GME activity, such as mannose and galactose. In agreement with this, immunocytochemical analyses showed an increase of mannan labelling in stem and fruit walls and of rhamnogalacturonan labelling in the stem alone. The results of MALDI-TOF fingerprinting of mannanase cleavage products of the cell wall suggested synthesis of specific mannan structures with modified degrees of substitution by acetate in the transgenic lines. When considered together, these findings indicate an intimate linkage between ascorbate and non-cellulosic cell-wall polysaccharide biosynthesis in plants, a fact that helps to explain the common factors in seemingly unrelated traits such as fruit firmness and ascorbate content.


Plant Physiology | 2007

Candidate Genes and Quantitative Trait Loci Affecting Fruit Ascorbic Acid Content in Three Tomato Populations

Rebecca Stevens; Michel Buret; Philippe Duffé; Cécile Garchery; Pierre Baldet; Mathilde Causse

Fresh fruit and vegetables are a major source of ascorbic acid (vitamin C), an important antioxidant for the human diet and also for plants. Ascorbic acid content in fruit exhibits a quantitative inheritance. Quantitative trait loci (QTL) for ascorbic acid content have been mapped in three tomato populations derived from crosses between cultivated tomato varieties (Solanum lycopersicum accessions) and three related wild species or subspecies. The first population consists of a set of introgression lines derived from Solanum pennellii, each containing a unique fragment of the wild species genome. The second population is an advanced backcross population derived from a cross between a cultivated tomato and a Solanum habrochaites (formerly Lycopersicum hirsutum) accession. The third population is a recombinant inbred line population derived from the cross between a cherry tomato line and a large fruited line. Common regions controlling ascorbic acid content have been identified on chromosomes 2, 8, 9, 10, and 12. In general, the wild alleles increased ascorbic acid content, but some improvement could also be provided by S. lycopersicum. Most QTLs appeared relatively stable over years and in different environments. Mapping of candidate genes involved in the metabolism of ascorbic acid has revealed a few colocations between genes and QTLs, notably in the case of a monodehydroascorbate reductase gene and a QTL present in two of the populations on chromosome 9 (bin 9-D), and a previously mapped GDP-mannose epimerase and a QTL on chromosome 9 (bin 9-J).


Plant Physiology | 1993

Purification and Characterization of 3-Methylcrotonyl-Coenzyme A Carboxylase from Higher Plant Mitochondria

Claude Alban; Pierre Baldet; Stella Axiotis; Roland Douce

3-Methylcrotonyl-coenzyme A (CoA) carboxylase was purified to homogeneity from pea (Pisum sativum L.) leaf and potato (Solanum tuberosum L.) tuber mitochondria. The native enzyme has an apparent molecular weight of 530,000 in pea leaf and 500,000 in potato tuber as measured by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate disclosed two nonidentical subunits. The larger subunit (B subunit) is biotinylated and has an apparent molecular weight of 76,000 in pea leaf and 74,000 in potato tuber. The smaller subunit (A subunit) is biotin free and has an apparent molecular weight of 54,000 in pea leaf and 53,000 in potato tuber. The biotin content of the enzyme is 1 mol/133,000 g of protein and 1 mol/128,000 g of protein in pea leaf and potato tuber, respectively. These values are consistent with an A4B4 tetrameric structure for the native enzyme. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8 to 8.3 and at 35 to 38[deg]C in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates 3-methylcrotonyl-CoA, ATP, and HCO3- were: 0.1 mM, 0.1 mM, and 0.9 mM, respectively, for pea leaf 3-methylcrotonyl-CoA carboxylase and 0.1 mM, 0.07 mM, and 0.34 mM, respectively, for potato tuber 3-methylcrotonyl-CoA carboxylase. A steady-state kinetic analysis of the carboxylase-catalyzed carboxylation of 3-methylcrotonyl-CoA gave rise to parallel line patterns in double reciprocal plots of initial velocity with the substrate pairs 3-methylcrotonyl-CoA plus ATP and 3-methylcrotonyl-CoA plus HCO3- and an intersecting line pattern with the substrate pair HCO3- plus ATP. It was concluded that the kinetic mechanism involves a double displacement. Purified 3-methylcrotonyl-CoA carboxylase was inhibited by end products of the reaction catalyzed, namely ADP and orthophosphate, and by 3-hydroxy-3-methylglutaryl-CoA. Finally, as for the 3-methylcrotonyl-CoA carboxylases from mammalian and bacterial sources, plant 3-methylcrotonyl-CoA carboxylase was sensitive to sulfhydryl and arginyl reagents.


Ecotoxicology and Environmental Safety | 2010

Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants

Hédia Hédiji; Wahbi Djebali; Cécile Cabasson; Michael Maucourt; Pierre Baldet; Anne Bertrand; Latifa Boulila Zoghlami; Catherine Deborde; Annick Moing; Renaud Brouquisse; Wided Chaïbi; Philippe Gallusci

The response of tomato plants to long-term cadmium exposure was evaluated after a 90-days long culture in hydroponic conditions (0, 20, and 100 μM CdCl(2)). Cadmium preferentially accumulated in roots, and to a lower extent in upper parts of plants. Absolute quantification of 28 metabolites was obtained through (1)H NMR, HPLC-PDA, and colorimetric methods. The principal component analysis showed a clear separation between control and Cd treated samples. Proline and total ascorbate amounts were reduced in Cd-treated leaves, whereas α-tocopherol, asparagine, and tyrosine accumulation increased, principally in 100 μM Cd treated leaves. Carotenoid and chlorophyll contents decreased only in 100 μM Cd-mature-leaves, which correlate with a reduced expression of genes essential for isoprenoid and carotenoid accumulations. Our results show that tomato plants acclimatize during long-term exposure to 20 μM Cd. On the contrary, 100μM Cd treatment results in drastic physiological and metabolic perturbations leading to plant growth limitation and fruit set abortion.


FEBS Letters | 1997

Biotin synthesis in higher plants: purification and characterization of bioB gene product equivalent from Arabidopsis thaliana overexpressed in Escherichia coli and its subcellular localization in pea leaf cells

Pierre Baldet; Claude Alban; Roland Douce

Biotin synthase catalyses the final step in the biotin biosynthetic pathway and is encoded by the bioB gene in Escherichia coli. To investigate the conversion of dethiobiotin to biotin in the plant kingdom, the cDNA encoding the bioB gene product equivalent from Arabidopsis thaliana was used to construct an E. coli overexpression strain. The purified A. thaliana bioB gene product is a homodimer (100 kDa) with a reddish color and has an absorbance spectrum characteristic of protein with [2Fe‐2S] clusters. Its intracellular compartmentation in pea leaves discloses a unique polypeptide of 39 kDa within the matrix of mitochondria.


Australian Journal of Plant Physiology | 2000

NMR study of low subcellular pH during the development of cherry tomato fruit

Dominique Rolin; Pierre Baldet; Daniel Just; Christian Chevalier; Marc Biran; Philippe Raymond

Changes in metabolites (organic acids, sugars and amino acids) and subcellular pH were studied during fruit development of cherry tomato (Lycopersicon esculentum Mill. var. cerasiformae). Fructose and glucose were the major sugars, whereas citrate and malate the two major organic acids. At different stages of fruit development, vacuolar and cytoplasmic pH changes were followed by in vivo 13C and 31P NMR spectroscopy. Fruit compartments had a cytoplasmic pH around 7.1 as early as the cell-divi-sion and -expansion stages. The vacuolar pH measured by in vivo 13C NMR spectroscopy decreased from 4.5 to 3.6. Concomitantly, strong accumulation of γ-aminobutyric acid (GABA) was observed during the first 15 days after anthesis and glutamate decarboxylase (GAD) activity increased 10-fold during the first 8 days of development. The relationships between organic acid biosynthesis and storage, GABA produc-tion, and subcellular pH changes during development of cherry tomato fruit are discussed.


Plant Cell and Environment | 2013

A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit

Cécile Garchery; Noé Gest; Phuc Thi Do; Moftah Alhagdow; Pierre Baldet; Guillaume Ménard; Capucine Massot; Hélène Gautier; Jawad Aarrouf; Alisdair R. Fernie; Rebecca Stevens

The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.


Metabolomics | 2009

Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit

Catherine Deborde; Mickaël Maucourt; Pierre Baldet; Stéphane Bernillon; Benoît Biais; Gilles Talon; Carine Ferrand; Daniel Jacob; Hélène Ferry-Dumazet; Antoine de Daruvar; Dominique Rolin; Annick Moing

Tomato is an essential crop in terms of economic importance and nutritional quality. In France, the third most important region for tomato (Solanum lycopersicum L.) production is Aquitaine where the major part of production is now grown soilless under greenhouse conditions with harvest from March to November. Tomato fruit quality at harvest is a direct function of its metabolite content at that time. The aim of this work was to use a global approach to characterize changes in the fruit organoleptic quality at harvest under commercial culture conditions during an entire season for two varieties and two different fertilization practices (with or without recycling of the nutrient solution) for one variety. Absolute quantification data of 32 major compounds in fruit without seeds were obtained through untargeted (proton nuclear magnetic resonance, 1H-NMR) quantitative profiling. These data were complemented by colorimetric analysis of ascorbate and total phenolics. They were analyzed with chemometric approaches. Principal component analysis (PCA) or partial least square analyses (PLS) revealed more discriminant metabolites for season than for variety and showed that nutrient solution recycling had very little effect on fruit composition. These tendencies were confirmed with univariate analyses. 1H-NMR profiling complemented with colorimetric analyses therefore provided a diagnostic tool to follow the changes in organoleptic and nutritional quality of tomato. In addition the quantitative information generated will help to increase our knowledge on the mechanisms of plant response to environmental modifications.

Collaboration


Dive into the Pierre Baldet's collaboration.

Top Co-Authors

Avatar

Daniel Just

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Rebecca Stevens

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Johann Petit

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mathilde Causse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Raymond

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Virginie Garcia

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claude Alban

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Annick Moing

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christian Chevalier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Hélène Gautier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge