Pierre Bousquet
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Bousquet.
Indiana University Mathematics Journal | 2013
Pierre Bousquet; Jean Van Schaftingen
The estimate \[ \norm{D^{k-1}u}_{L^{n/(n-1)}} \le \norm{A(D)u}_{L^1} \] is shown to hold if and only if \(A(D)\) is elliptic and canceling. Here \(A(D)\) is a homogeneous linear differential operator \(A(D)\) of order \(k\) on \(\R^n\) from a vector space \(V\) to a vector space \(E\). The operator \(A(D)\) is defined to be canceling if \[ \bigcap_{\xi \in \R^n \setminus \{0\}} A(\xi)[V]=\{0\}. \] This result implies in particular the classical Gagliardo--Nirenberg-Sobolev inequality, the Korn--Sobolev inequality and Hodge--Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous linear differential operator \(L(D)\) of order \(k\) on \(\R^n\) from a vector space \(E\) to a vector space \(F\) is introduced. It is proved that \(L(D)\) is cocanceling if and only if for every \(f \in L^1(\R^n; E)\) such that \(L(D)f=0\), one has \(f \in \dot{W}^{-1, n/(n-1)}(\R^n; E)\). The results extend to fractional and Lorentz spaces and can be strengthened using some tools of J. Bourgain and H. Brezis.
Journal of the European Mathematical Society | 2015
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen
Given a compact manifold \(N^n\), an integer \(k \in \mathbb{N}_*\) and an exponent \(1 \le p < \infty\), we prove that the class \(C^\infty(\overline{Q}^m; N^n)\) of smooth maps on the cube with values into \(N^n\) is dense with respect to the strong topology in the Sobolev space \(W^{k, p}(Q^m; N^n)\) when the homotopy group \(\pi_{\lfloor kp \rfloor}(N^n)\) of order \(\lfloor kp \rfloor\) is trivial. We also prove the density of maps that are smooth except for a set of dimension \(m - \lfloor kp \rfloor - 1\), without any restriction on the homotopy group of \(N^n\).
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 2016
Pierre Bousquet; Lorenzo Brasco; Vesa Julin
We consider local minimizers of the functional \[ \sum_{i=1}^N \int (|u_{x_i}|-\delta_i)^p_+\, dx+\int f\, u\, dx, \] where
Journal of Fixed Point Theory and Applications | 2014
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen
\delta_1,\dots,\delta_N\ge 0
Annali di Matematica Pura ed Applicata | 2017
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen
and
Comptes Rendus Mathematique | 2018
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen
(\,\cdot\,)_+
Analysis & PDE | 2018
Pierre Bousquet; Lorenzo Brasco
stands for the positive part. Under suitable assumptions on
Confluentes Mathematici | 2013
Pierre Bousquet; Augusto C. Ponce; Jean Van Schaftingen
f
Journal of Functional Analysis | 2018
Pierre Bousquet; Emmanuel Russ; Yi Wang; Po-Lam Yung
, we prove that local minimizers are Lipschitz continuous functions if
Calculus of Variations and Partial Differential Equations | 2018
Pierre Bousquet; Lorenzo Brasco; Chiara Leone; Anna Verde
N=2