Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Broqua is active.

Publication


Featured researches published by Pierre Broqua.


Molecular and Cellular Endocrinology | 2001

Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism.

Paula D. Raposinho; Dominique D. Pierroz; Pierre Broqua; Richard B. White; Thierry Pedrazzini; Michel L. Aubert

Neuropeptide Y (NPY) is involved in the central regulation of appetite, sexual behavior, and reproductive function. We have previously shown that chronic infusion of NPY into the lateral ventricle of normal rats produced an obesity syndrome characterized by hyperphagia, hyperinsulinism and collapse of reproductive function. We further demonstrated that acute inhibition of LH secretion in castrated rats was preferentially mediated by the NPY receptor subtype 5 (Y(5)). In the present study, the effects of chronic, central infusion of NPY, or the mixed Y2-Y5 agonist PYY(3-36), were evaluated both in normal male C57BL/6J mice and Sprague-Dawley rats. After a 7-day infusion to male mice, both NPY and PYY(3-36) at 5 nmol per day, induced marked hyperphagia leading to significant increases in body and fat pad weights. Furthermore, both compounds markedly reduced several markers of the reproductive axis. In the rat study, PYY(3-36) was more active than NPY to inhibit the pituitary-testicular axis, confirming the importance of the Y5 subtype for such effects. In the mouse, chronic NPY infusion induced a sustained increase in corticosterone and insulin secretion. Plasma leptin levels were also markedly increased possibly explaining the observed reduction in gene expression for hypothalamic NPY. Gene expression for hypothalamic POMC was reduced in the NPY- or PYY(3-36)-infused mice, suggesting that NPY exacerbated food intake by both acting through its own receptor(s), and reducing the satiety signal driven by the POMC-derived alpha-MSH. The present study in the mouse suggests in analogy with available rat data, that constant exposure to elevated NPY in the hypothalamic area unabatedly enhances food intake leading to an obesity syndrome including increased adiposity, insulin resistance, hypercorticism, and hypogonadism, reminiscent of the phenotype of the ob/ob mouse, that displays elevated hypothalamic NPY secondary to lack of leptin negative feedback action.


Endocrinology | 1999

Evidence That the Inhibition of Luteinizing Hormone Secretion Exerted by Central Administration of Neuropeptide Y (NPY) in the Rat Is Predominantly Mediated by the NPY-Y5 Receptor Subtype

Paula D. Raposinho; Pierre Broqua; Dominique D. Pierroz; Amanda Hayward; Yvan Dumont; Rémi Quirion; Jean-Louis Junien; Michel L. Aubert

A number of studies have indicated that neuropeptide Y (NPY) is a central regulator of the gonadotropic axis, and the Y1 receptor was initially suggested to be implicated. As at least five different NPY receptor subtypes have now been characterized, the aim of the present study was to reinvestigate the pharmacological profile of the receptor(s) mediating the inhibitory action of NPY on LH secretion by using a panel of NPY analogs with different selectivity toward the five NPY receptor subtypes. When given intracerebroventricularly (icv) to castrated rats, a bolus injection of native NPY (0.7-2.3 nmol) dose-dependently decreased plasma LH. Peptide YY (PYY; 2.3 nmol) was as potent as NPY, suggesting that the Y3 receptor is not implicated. Confirming previous data, the mixed Y1, Y4, and Y5 agonist [Leu31,Pro34]NPY (0.7-2.3 nmol) inhibited LH release with potency and efficacy equal to those of NPY. Neither the selective Y2 agonist C2-NPY (2.3 nmol) nor the selective Y4 agonist rat pancreatic polypeptide affected plasma LH, excluding Y2 and Y4 subtypes for the action of NPY on LH secretion. The mixed Y4-Y5 agonist human pancreatic polypeptide (0.7-7 nmol) as well as the mixed Y2-Y5 agonist PYY3-36 (0.7-7 nmol) that displayed very low affinity for the Y1 receptor, thus practically representing selective Y5 agonists in this system, decreased plasma LH with potency and efficacy similar to those of NPY, indicating that the Y5 receptor is mainly involved in this inhibitory action of NPY on LH secretion. [D-Trp32]NPY, a selective, but weak, Y5 agonist, also inhibited plasma LH at a dose of 7 nmol. Furthermore, the inhibitory action of NPY (0.7 nmol) on LH secretion could be fully prevented, in a dose-dependent manner (6-100 microg, icv), by a nonpeptidic Y5 receptor antagonist. This antagonist (60 microg, icv) also inhibited the stimulatory action of NPY (0.7 nmol) on food intake. The selectivity of PYY3-36, human PP, [D-Trp32]NPY, and the Y5 antagonist for the Y5 receptor subtype was further confirmed by their ability to inhibit the specific [125I][Leu31,Pro34]PYY binding to rat brain membrane homogenates in the presence of the Y1 receptor antagonist BIBP3226, a binding assay system that was described as being highly specific for Y5-like receptors. With the exception of [D-Trp32]NPY, all analogs able to inhibit LH secretion were also able to stimulate food intake. Taken together, these results indicate that the Y5 receptor is involved in the negative control by NPY of the gonadotropic axis.


Brain Research | 1996

Antinociceptive effects of neuropeptide Y and related peptides in mice

Pierre Broqua; Joseph G. Wettstein; Marie-Noëlle Rocher; Bernadette Gauthier-Martin; Pierre Riviere; Jean-Louis Junien; Svein G. Dahl

This study compares the antinociceptive and orexigenic activities of NPY and analogs after intracerebroventricular administration in mice. NPY had an antinociceptive action in the mouse writhing test which was not affected by prior treatment with naltrexone, yohimbine, idazoxan or reserpine. A detailed examination revealed that NPY (0.023-0.7 nmol), PYY (0.007-0.07 nmol), NPY2-36 (0.023-0.23 nmol) and the Y1 agonist [Leu31, Pro34]-NPY (0.07-0.7 nmol) all produced a dose-dependent and complete suppression of acetic acid-induced writhing. In contrast, the Y2 agonist, NPY13-36, had little or no antinociceptive effect. As shown by their ED50 values, the relative potency of the peptides was PYY > NPY2-36 > or = NPY > [Leu31, Pro34]-NPY > > NPY13-36, suggesting that a Y1 rather than a Y2 or Y3 receptor subtype was implicated in the antinociceptive action. Thereafter, all peptides were assessed for their effects on food intake. With respect to dose and peptide specificity, the hyperphagic effects of NPY and related peptides paralleled those on nociception, suggesting a common receptor mechanism. However, a purported NPY antagonist, [D-Trp32]-NPY, attenuated NPYs effect on feeding yet this same peptide elicited a dose-dependent inhibition of acetic acid-induced writhing, suggesting some molecular distinction between antinociception and stimulation of food intake.


Journal of Pharmacology and Experimental Therapeutics | 2006

Rapid Suppression of Plasma Testosterone Levels and Tumor Growth in the Dunning Rat Model Treated with Degarelix, a New Gonadotropin-Releasing Hormone Antagonist

Marc Princivalle; Pierre Broqua; Richard E. White; Jessica Meyer; Gaell Mayer; Lucy Elliott; Ketil Bjarnason; Robert Haigh; Christopher M. Yea

Degarelix (FE 200486) is a member of a new class of water-soluble (>50 mg/ml) gonadotropin-releasing hormone (GnRH) antagonists in clinical development for prostate cancer. Upon subcutaneous administration, degarelix forms a gel that results in a sustained release of the compound into the circulation, immediately blocking GnRH receptors in the pituitary and inducing a fast and sustained suppression of gonadotrophin secretion in rats and primates. One of the few animal models of prostate adenocarcinoma is the Dunning R-3327H rat carcinoma transplanted into Copenhagen rats. The growth of the Dunning tumor can be inhibited by various treatments reported to be effective in the clinic, such as GnRH superagonists, antiandrogens, 5-alphareductase inhibitors, tyrosine kinase inhibitors, and surgical castration. We report in this study that degarelix produces a fast and sustained suppression of the pituitary gonadal axis in rats and a similar inhibition of tumor growth compared with surgical castration in the Dunning R-3327H rat carcinoma model. First, degarelix as been compared with d-Trp6-luteinizing hormone-releasing hormone and surgical castration on a short-term study (2 months); and second, degarelix has been compared with leuprolide and surgical castration on a long-term study (12 months). In both studies, degarelix demonstrated a sustained inhibition of tumor growth at least comparable with surgical castration. These data provide a convincing profile of degarelix as a potential candidate for the clinical management of sex steroid-dependent pathologies, such as prostate cancer, where long-term reversible chemical castration is required.


Neuroendocrinology | 2000

Stimulation of the gonadotropic axis by the neuropeptide Y receptor Y1 antagonist/Y4 agonist 1229U91 in the male rat.

Paula D. Raposinho; Pierre Broqua; Amanda Hayward; Karen Akinsanya; Robert Galyean; Claudio Schteingart; Jean-Louis Junien; Michel L. Aubert

Neuropeptide Y (NPY) is a highly potent orexigenic substance that is also known to modulate gonadotropin secretion. Five receptor subtypes for NPY have been identified, and a potent antagonist for the receptor subtype 1 (Y1), 1229U91, also known as GW1229 or GR231118, has been described. Subsequently, 1229U91 was also shown to represent a highly potent agonist for the Y4 receptor subtype. Very unexpectedly, intracerebroventricular administration of 1229U91 elicited an intense, dose-dependent surge of both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in intact male rats that lasted for 6 h. Such stimulation was absent when a potent gonadotropin-releasing hormone antagonist was administered systemically, suggesting that 1229U91 acts centrally to stimulate gonadotropin-releasing hormone release. 1229U91 administration had no effect on growth hormone, thyroid-stimulating hormone, and corticosterone secretions. In addition to 1229U91, four other parent dimer molecules described earlier produced a marked and sustained stimulation of LH when injected intracerebroventricularly that was proportional to their binding affinity for the Y4 receptor. Central administration of the specific Y1 antagonist BIBO3304 (20 µg) had no effect on LH secretion, making it unlikely for 1229U91 to stimulate LH secretion by an antagonistic action on the Y1 receptor subtype, thus suggesting a Y4 receptor mediation. In conclusion, the 1229U91 molecule displays an interesting conformational epitope that is able to generate large LH surges, possibly by activating Y4 or Y4-like receptor subtypes or by acting on a NPY receptor unrelated target.


Annals of the Rheumatic Diseases | 2015

Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis

Nadira Ruzehaji; Camelia Frantz; Matthieu Ponsoye; J. Avouac; Sonia Pezet; Thomas Guilbert; Jean-Michel Luccarini; Pierre Broqua; Jean-Louis Junien; Yannick Allanore

Background The pathogenesis of systemic sclerosis (SSc) involves a distinctive triad of autoimmune, vascular and inflammatory alterations resulting in fibrosis. Evidence suggests that peroxisome proliferator-activated receptors (PPARs) play an important role in SSc-related fibrosis and their agonists may become effective therapeutic targets. Objective To determine the expression of PPARs in human fibrotic skin and investigate the effects of IVA337, a pan PPAR agonist, in in vitro and in vivo models of fibrosis. Methods The antifibrotic effects of IVA337 were studied using a bleomycin-induced mouse model of dermal fibrosis. The in vivo effect of IVA337 on wound closure and inflammation were studied using an excisional model of wound healing. Results Low levels of PPARα and PPARγ were detected in the skin of patients with SSc compared with controls. In mice, IVA337 was associated with decreased extracellular matrix (ECM) deposition and reduced expression of phosphorylated SMAD2/3—intracellular effector of transforming growth factor (TGF)-β1. Although the antifibrotic effect of pan PPAR was similar to that of PPARγ agonist alone, a significant downregulation of several markers of inflammation was associated with IVA337. Despite its anti-inflammatory and antifibrotic properties, IVA337 did not interfere with wound closure. In vitro effects of IVA337 included attenuation of transcription of ECM genes and alteration of canonical and non-canonical TGF-β signalling pathways. Conclusions These findings indicate that simultaneous activation of all three PPAR isoforms exerts a dampening effect on inflammation and fibrosis, making IVA337 a potentially effective therapeutic candidate in the treatment of fibrotic diseases including SSc.


Hepatology Communications | 2017

The new‐generation pan‐peroxisome proliferator‐activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis

Guillaume Wettstein; Jean-Michel Luccarini; Laurence Poekes; Patrick Faye; Francine Kupkowski; Vanessa Adarbes; Evelyne Defrêne; Céline Estivalet; Xavier Gawronski; Ingrid Jantzen; Alain Philippot; Julien Tessier; Pascale Tuyaa‐Boustugue; Fiona Oakley; Dereck A. Mann; Isabelle Leclercq; Sven Francque; Irena Konstantinova; Pierre Broqua; Jean-Louis Junien

IVA337 is a pan‐peroxisome proliferator‐activated receptor (PPAR) agonist with moderate and well‐balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis. Clinical results have demonstrated variable improvements of histologically assessed hepatic lesions depending on the profile of the tested drug, suggesting that concomitant activation of the three PPAR isoforms would translate into a more substantial therapeutic outcome in patients with NASH. We investigated the effects of IVA337 on several preclinical models reproducing the main metabolic and hepatic features associated with NASH. These models comprised a diet‐induced obesity model (high‐fat/high‐sucrose diet); a methionine‐ and choline‐deficient diet; the foz/foz model; the CCl4‐induced liver fibrosis model (prophylactic and therapeutic) and human primary hepatic stellate cells. IVA337 normalized insulin sensitivity while controlling body weight gain, adiposity index, and serum triglyceride increases; it decreased liver steatosis, inflammation, and ballooning. IVA337 demonstrated preventive and curative effects on fibrosis in the CCl4 model and inhibited proliferation and activation of human hepatic stellate cells, the key cells driving liver fibrogenesis in NASH. Moreover, IVA337 inhibited the expression of (pro)fibrotic and inflammasome genes while increasing the expression of β‐oxidation‐related and fatty acid desaturation‐related genes in both the methionine‐ and choline‐deficient diet and the foz/foz model. For all models, IVA337 displayed an antifibrotic efficacy superior to selective PPARα, PPARδ, or PPARγ agonists. Conclusion: The therapeutic potential of IVA337 for the treatment of patients with NASH is supported by our data. (Hepatology Communications 2017;1:524–537)


Journal of Pharmacology and Experimental Therapeutics | 2010

WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one]: A Novel Dopamine D2 Receptor Partial Agonist/Serotonin Reuptake Inhibitor with Preclinical Antipsychotic-Like and Antidepressant-Like Activity

Radka Graf; Steven M. Grauer; Rachel Navarra; Claudine Pulicicchio; Zoe A. Hughes; Qian Lin; Caitlin Wantuch; Sharon Rosenzweig-Lipson; Farhana Pruthi; Margaret Lai; Deborah F. Smith; Wouter Goutier; Martina van de Neut; Albert Jean Robichaud; David P. Rotella; Rolf W. Feenstra; Chris G. Kruse; Pierre Broqua; Chad E. Beyer; Andrew C. McCreary; Mark H. Pausch; Karen L. Marquis

The preclinical characterization of WS-50030 [7-{4-[3-(1H-inden-3-yl)propyl]piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D2 receptor (D2L Ki, 4.0 nM) and serotonin transporter (Ki, 7.1 nM), potent D2 partial agonist activity (EC50, 0.38 nM; Emax, 30%), and complete block of the serotonin transporter (IC50, 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID50, 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D2 partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazoles reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D2 receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants.


European Neuropsychopharmacology | 1998

The discriminative stimulus properties of U50,488 and morphine are not shared by fedotozine.

Pierre Broqua; Joseph G. Wettstein; Marie-Noëlle Rocher; Pierre Riviere; Svein G. Dahl

Fedotozine is a kappa opioid receptor agonist having antinociceptive properties but devoid of diuretic effects. The aim of the study was to evaluate the discriminative stimulus effects of fedotozine at doses previously reported to produce maximal effects in in vivo assays measuring kappa-mediated analgesia. By using a two-lever drug discrimination task, two groups of rats were trained to discriminate either a 3 mg/kg i.p. dose of the kappa opioid agonist, U50,488, or a 5 mg/kg i.p. dose of the mu opioid agonist, morphine, from saline. Once trained, rats were used to conduct tests of stimulus generalization with morphine, U50,488 and fedotozine along with another kappa agonist, CI-977, and another mu agonist, fentanyl. The stimulus effect of U50,488 was shared by CI-977 but not by morphine. Conversely, the stimulus effect of morphine was shared by fentanyl but not by U50,488. Fedotozine (1-10 mg/kg) failed to substitute to either U50,488 or morphine. These results indicate that, when administered at doses fully effective in producing antinociception, the interoceptive stimulus effects of fedotozine, if any, can be distinguished from those produced by U50,488 and morphine.


Annals of the Rheumatic Diseases | 2017

Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension

Jérôme Avouac; Irena Konstantinova; Christophe Guignabert; Sonia Pezet; Jérémy Sadoine; Thomas Guilbert; Anne Cauvet; Ly Tu; Jean-Michel Luccarini; Jean-Louis Junien; Pierre Broqua; Yannick Allanore

Objective To evaluate the antifibrotic effects of the pan-peroxisome proliferator-activated receptor (PPAR) agonist IVA337 in preclinical mouse models of pulmonary fibrosis and related pulmonary hypertension (PH). Methods IVA337 has been evaluated in the mouse model of bleomycin-induced pulmonary fibrosis and in Fra-2 transgenic mice, this latter being characterised by non-specific interstitial pneumonia and severe vascular remodelling of pulmonary arteries leading to PH. Mice received two doses of IVA337 (30 mg/kg or 100 mg/kg) or vehicle administered by daily oral gavage up to 4 weeks. Results IVA337 demonstrated at a dose of 100 mg/kg a marked protection from the development of lung fibrosis in both mouse models compared with mice receiving 30 mg/kg of IVA337 or vehicle. Histological score was markedly reduced by 61% in the bleomycin model and by 50% in Fra-2 transgenic mice, and total lung hydroxyproline concentrations decreased by 28% and 48%, respectively, as compared with vehicle-treated mice. IVA337 at 100 mg/kg also significantly decreased levels of fibrogenic markers in lesional lungs of both mouse models. In addition, IVA337 substantially alleviated PH in Fra-2 transgenic mice by improving haemodynamic measurements and vascular remodelling. In primary human lung fibroblasts, IVA337 inhibited in a dose-dependent manner fibroblast to myofibroblasts transition induced by TGF-β and fibroblast proliferation mediated by PDGF. Conclusion We demonstrate that treatment with 100 mg/kg IVA337 prevents lung fibrosis in two complementary animal models and substantially attenuates PH in the Fra-2 mouse model. These findings confirm that the pan-PPAR agonist IVA337 is an appealing therapeutic candidate for these cardiopulmonary involvements.

Collaboration


Dive into the Pierre Broqua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Lück

Ferring Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Haigh

Ferring Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yannick Allanore

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge