Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Cardol is active.

Publication


Featured researches published by Pierre Cardol.


Proceedings of the National Academy of Sciences of the United States of America | 2010

An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light

Benjamin Bailleul; Alessandra Rogato; Alessandra De Martino; Sacha Coesel; Pierre Cardol; Chris Bowler; Angela Falciatore; Giovanni Finazzi

Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas

Frédéric Jans; Emmanuel Mignolet; Pierre-Alain Houyoux; Pierre Cardol; Bart Ghysels; Stéphan Cuiné; Laurent Cournac; Gilles Peltier; Claire Remacle; Fabrice Franck

In photosynthetic eukaryotes, nonphotochemical plastoquinone (PQ) reduction is important for the regulation of photosynthetic electron flow. In green microalgae where this process has been demonstrated, the chloroplastic enzyme that catalyses nonphotochemical PQ reduction has not been identified yet. Here, we show by an RNA interference (RNAi) approach that the NDA2 gene, belonging to a type II NAD(P)H dehydrogenases family in the green microalga Chlamydomonas reinhardtii, encodes a chloroplastic dehydrogenase that functions to reduce PQ nonphotochemically in this alga. Using a specific antibody, we show that the Nda2 protein is localized in chloroplasts of wild-type cells and is absent in two Nda2-RNAi cell lines. In both mutant cell lines, nonphotochemical PQ reduction is severely affected, as indicated by altered chlorophyll fluorescence transients after saturating illumination. Compared with wild type, change in light excitation distribution between photosystems (‘state transition’) upon inhibition of mitochondrial electron transport is strongly impaired in transformed cells because of inefficient PQ reduction. Furthermore, the amount of hydrogen produced by Nda2-RNAi cells under sulfur deprivation is substantially decreased compared with wild type, which supports previous assumptions that endogenous substrates serve as source of electrons for hydrogen formation. These results demonstrate the importance of Nda2 for nonphotochemical PQ reduction and associated processes in C. reinhardtii.


Biochimica et Biophysica Acta | 2008

Alternative photosynthetic electron flow to oxygen in marine Synechococcus

Shaun Bailey; Anastasios Melis; Katherine R. M. Mackey; Pierre Cardol; Giovanni Finazzi; Gert L. van Dijken; Gry Mine Berg; Kevin R. Arrigo; Jeff Shrager; Arthur R. Grossman

Cyanobacteria dominate the worlds oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.


The Plant Cell | 2013

A dual strategy to cope with high light in Chlamydomonas reinhardtii

Guillaume Allorent; Ryutaro Tokutsu; Thomas Roach; Graham Peers; Pierre Cardol; Jacqueline Girard-Bascou; Daphné Seigneurin-Berny; Dimitris Petroutsos; Marcel Kuntz; Cécile Breyton; Fabrice Franck; Francis-André Wollman; Krishna K. Niyogi; Anja Krieger-Liszkay; Jun Minagawa; Giovanni Finazzi

To protect photosynthetic organisms from photodamage, excess energy in photosystem II must be dissipated. In C. reinhardtii, two alternative mechanisms (energy thermal dissipation [qE] and kinase-mediated migration of light harvesting proteins [qT]) synergistically modulate photoprotection via the reversible migration of LHCSR3, a key qE effector in this alga, between photosystems II and I during qT. Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition–deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An original adaptation of photosynthesis in the marine green alga Ostreococcus

Pierre Cardol; Benjamin Bailleul; Fabrice Rappaport; Evelyne Derelle; Daniel Béal; Cécile Breyton; Shaun Bailey; Francis André Wollman; Arthur R. Grossman; Hervé Moreau; Giovanni Finazzi

Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain. Differences between the two strains include changes in the light-harvesting capacity, which is lower in OTH95, and in the photoprotection capacity, which is enhanced in OTH95. Furthermore, RCC809 has a reduced maximum rate of O2 evolution, which is limited by its decreased photosystem I (PSI) level, a possible adaptation to Fe limitation in the open oceans. This decrease is, however, accompanied by a substantial rerouting of the electron flow to establish an H2O-to-H2O cycle, involving PSII and a potential plastid plastoquinol terminal oxidase. This pathway bypasses electron transfer through the cytochrome b6f complex and allows the pumping of “extra” protons into the thylakoid lumen. By promoting the generation of a large ΔpH, it facilitates ATP synthesis and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diversion of electrons to oxygen downstream of PSII, but before PSI, reflects a common and compulsory strategy in marine phytoplankton to bypass the constraints imposed by light and/or nutrient limitation and allow successful colonization of the open-ocean marine environment.


Biochemical Journal | 2004

Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin

Ingrid Bourges; Claire Ramus; Bénédicte Mousson de Camaret; Réjane Beugnot; Claire Remacle; Pierre Cardol; Götz Hofhaus; Jean-Paul Issartel

Mitochondria-encoded ND (NADH dehydrogenase) subunits, as components of the hydrophobic part of complex I, are essential for NADH:ubiquinone oxidoreductase activity. Mutations or lack of expression of these subunits have significant pathogenic consequences in humans. However, the way these events affect complex I assembly is poorly documented. To understand the effects of particular mutations in ND subunits on complex I assembly, we studied four human cell lines: ND4 non-expressing cells, ND5 non-expressing cells, and rho degrees cells that do not express any ND subunits, in comparison with normal complex I control cells. In control cells, all the seven analysed nuclear-encoded complex I subunits were found to be attached to the mitochondrial inner membrane, except for the 24 kDa subunit, which was nearly equally partitioned between the membranes and the matrix. Absence of a single ND subunit, or even all the seven ND subunits, caused no major changes in the nuclear-encoded complex I subunit content of mitochondria. However, in cells lacking ND4 or ND5, very low amounts of 24 kDa subunit were found associated with the membranes, whereas most of the other nuclear-encoded subunits remained attached. In contrast, membrane association of most of the nuclear subunits was significantly reduced in the absence of all seven ND proteins. Immunopurification detected several subcomplexes. One of these, containing the 23, 30 and 49 kDa subunits, also contained prohibitin. This is the first description of prohibitin interaction with complex I subunits and suggests that this protein might play a role in the assembly or degradation of mitochondrial complex I.


Nature | 2015

Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms

Benjamin Bailleul; Nicolas Berne; Omer Murik; Dimitris Petroutsos; Judit Prihoda; Atsuko Tanaka; Valeria Villanova; Richard Bligny; Serena Flori; Denis Falconet; Anja Krieger-Liszkay; Stefano Santabarbara; Fabrice Rappaport; Pierre Joliot; Leila Tirichine; Paul G. Falkowski; Pierre Cardol; Chris Bowler; Giovanni Finazzi

Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth’s climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.


Biochimica et Biophysica Acta | 2011

Regulation of electron transport in microalgae.

Pierre Cardol; Giorgio Forti; Giovanni Finazzi

Unicellular algae are characterized by an extreme flexibility with respect to their responses to environmental constraints. This flexibility probably explains why microalgae show a very high biomass yield, constitute one of the major contributors to primary productivity in the oceans and are considered a promising choice for biotechnological applications. Flexibility results from a combination of several factors including fast changes in the light-harvesting apparatus and a strong interaction between different metabolic processes (e.g. respiration and photosynthesis), which all take place within the same cell. Microalgae are also capable of modifying their photosynthetic electron flow capacity, by changing its maximum rate and/or by diverting photogenerated electrons towards different sinks depending on their growth status. In this review, we will focus on the occurrence and regulation of alternative electron flows in unicellular algae and compare data obtained in these systems with those available in vascular plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.


Plant Physiology | 2003

Photosynthesis and State Transitions in Mitochondrial Mutants of Chlamydomonas reinhardtii Affected in Respiration

Pierre Cardol; Geoffrey Gloire; Michel Havaux; Claire Remacle; René-Fernand Matagne; Fabrice Franck

Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast.


Photosynthesis Research | 2010

Electrochromism: a useful probe to study algal photosynthesis.

Benjamin Bailleul; Pierre Cardol; Cécile Breyton; Giovanni Finazzi

In photosynthesis, electron transfer along the photosynthetic chain results in a vectorial transfer of protons from the stroma to the lumenal space of the thylakoids. This promotes the generation of an electrochemical proton gradient (ΔμH+), which comprises a gradient of electric potential (ΔΨ) and of proton concentration (ΔpH). The ΔμH+ has a central role in the photosynthetic process, providing the energy source for ATP synthesis. It is also involved in many regulatory mechanisms. The ΔpH modulates the rate of electron transfer and triggers deexcitation of excess energy within the light harvesting complexes. The ΔΨ is required for metabolite and protein transport across the membranes. Its presence also induces a shift in the absorption spectra of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift (ECS). In this review, we discuss the characteristic features of the ECS, and illustrate possible applications for the study of photosynthetic processes in vivo.

Collaboration


Dive into the Pierre Cardol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego González-Halphen

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Vázquez-Acevedo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Héctor Miranda-Astudillo

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge