Pierre Cillard
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Cillard.
Phytochemistry | 1987
S. Rafat Husain; Josiane Cillard; Pierre Cillard
Abstract The flavonoids scavenge hydroxyl ( . OH) radicals generated by UV photolysis of hydrogen peroxide. Free . OH radicals were spin-trapped by 5,5-dimethyl-1-pyrroline N -oxide and the adduct was detected by high pressure liquid chromatography coupled with an electrochemical detector. The scavenging activity of flavonoids decreases in the order: myricetin > quercetin > rhamnetin > morin > diosmetin > naringenin > apigenin > catechin >5,7- dihydroxy -3′,4′,5′-trimethoxyflavone > robinin > kaempferol > flavone. The activity increases with the number of hydroxyl groups substituted in the aromatic B-ring. The presence of a hydroxyl at C-3 and its glycosylation does not further increase scavenging efficiency. It is suggested that the overall antioxidant effect of flavonoids on lipid peroxidation may be due to their . OH and O· − 2 scavenging properties and the reaction with peroxy radicals.
Biochemical Pharmacology | 1993
Isabelle Morel; Gérard Lescoat; Pascale Cogrel; Odile Sergent; Nicole Pasdeloup; Pierre Brissot; Pierre Cillard; Josiane Cillard
The cytoprotective effect of three flavonoids, catechin, quercetin and diosmetin, was investigated on iron-loaded hepatocyte cultures, considering two parameters: the prevention of iron-increased lipid peroxidation and the inhibition of intracellular enzyme release. These two criteria of cytoprotection allowed the calculation of mean inhibitory concentrations (IC50) which revealed that the effectiveness of these flavonoids could be classified as follows: catechin > quercetin > diosmetin. These IC50 values have been related to structural characteristics of the flavonoids tested. Moreover, the investigation of the capacity of these flavonoids to remove iron from iron-loaded hepatocytes revealed a good relationship between this iron-chelating ability and the cytoprotective effect. The cytoprotective activity of catechin, quercetin and diosmetin could thus be ascribed to their widely known antiradical property but also to their iron-chelating effectiveness. These findings increase further the prospects for the development and clinical application of these potent antioxidants.
Phytochemistry | 1986
Joseph Torel; Josiane Cillard; Pierre Cillard
The autoxidation of linoleic acid and methyl linolenate is inhibited by flavonoids. The antioxidant efficiency of these flavonoids increases with their concentration and in the order fustin < catechin < quercetin < rutin = luteolin < kaempferol < morin for linoleic acid and rutin < catechin < morin = kaempferol for methyl linolenate. Flavonoids are more effective on linoleic acid than on methyl linolenate. The antioxidant activity offlavonoids is related to an inhibition of the formation of trans,trans hydroperoxide isomers of linoleic acid. This inhibition exhibited the great H-atom donating ability of flavonoids to peroxy radical, thus terminating the chain radical reaction.
Methods in Enzymology | 1994
Isabelle Morel; Gérard Lescoat; Pierre Cillard; Josiane Cillard
Publisher Summary This chapter discusses the role of flavonoids and iron chelation in antioxidant action. The potential of flavonoids to inhibit lipid peroxidation in biological models is supposed to reside mainly in their free radical scavenging capacity rather than in their iron chelating activity. This property is considered as a minor mechanism in the antioxidant action, because it has not been clearly established in biological systems. The assessment of a relationship between the antioxidant effect and the iron chelating capacity of flavonoids is subsequently of interest. For this purpose, rat is used hepatocyte cultures as a biological model where lipid peroxidation is induced by iron [Fe(III)] in its complexed form with nitrilotriacetic acid (NTA). The Fe-NTA complex is known to induce a rapid accumulation of iron inside the cells. Nitrilotriacetic acid (NTA) is used to maintain ferric iron in a soluble state; it is a low-affinity iron chelator.
Biochemical Pharmacology | 1990
Isabelle Morel; Gérard Lescoat; Josiane Cillard; Nicole Pasdeloup; Pierre Brissot; Pierre Cillard
The present study relates to the effect of ferric iron supplementation on lipid peroxidation of adult rat hepatocyte pure cultures. Lipid peroxidation was evaluated by free malondialdehyde (MDA) using size exclusion chromatography (HPLC) as a specific and sensitive method. The ferric iron used under its complexed form with nitrilotriacetic acid (NTA) exhibited a prooxidant activity corresponding to an increase of free MDA recovery in the cells and in the culture medium. This enhancement of lipid peroxidation in the hepatocyte cultures supplemented with ferric iron was correlated with an intracellular enzyme leakage (lactate dehydrogenase and transaminase), suggesting that lipid peroxidation and enzyme release represented good parameters for cytotoxicity evaluation. The toxic effect of Fe-NTA on hepatocyte cultures was a function of the incubation time (from 0 to 48 hr) and of the concentration of ferric iron loading (i.e. 5, 20 and 100 microM). The mechanism by which Fe-NTA induced cellular damage involved free radical production, as increasing amounts of free radical scavengers corresponded to diminishing rates of both total free MDA and enzyme release. However, this reducing capacity varied from one scavenger to another, where they exhibited preferentially a decrease in lipid peroxidation or in enzyme leakage. This suggested a dissociation between the two parameters of cytotoxicity considered. Lipid peroxidation corresponding to alterations of both inner membranes and the plasma membrane, whereas enzyme release mainly corresponded to the damage of plasma membrane. Subsequently, some scavengers (superoxide dismutase, mannitol, alpha tocopherol, beta carotene) presented an intracellular activity, as they reduced mostly lipid peroxidation. Other ones (catalase, dimethylpyrroline N-oxide, thiourea) seemed essentially efficient in protecting the external plasma membrane, as shown an important decrease in enzyme leakage.
Journal of the American Oil Chemists' Society | 1984
J. P. Koskas; Josiane Cillard; Pierre Cillard
The autoxidation of linoleic acid dispersed in an aqueous media and the effect of α-, γ- and δ-tocopherols were studied. The quantitative analysis of the hydroperoxide isomers (13-cis,trans; 13-trans,trans; 9-trans,cis; 9-trans,trans) by direct high-performance liquid chromatography exhibited a prooxidant activity of α-tocopherol at high concentration (3.8% by weight of linoleic acid). On the other hand, α-tocopherol at lower concentrations (0.38 and 0.038%) and γ- and δ-tocopherols at high concentration (3.8%) were antioxidant. Furthermore, the addition of tocopherols modified the distribution of the geometrical isomers. The formation of thetrans,trans hydroperoxide isomers was completely inhibited by the highest concentration of the three tocopherols independently of their antioxidant or prooxidant activity and only delayed by the lower concentrations of α-tocopherol. The addition of tocopherols to hydroperoxide isomers reduced the decomposition rate of these isomers in the order α-tocopherol < γ-tocopherol < δ-tocopherol for thecis,trans hydroperoxide isomer and α-tocopherol ≪ γ-tocopherol ⋍ δ-tocopherol for thetrans,trans hydroperoxide isomer. With these hydroperoxides, as during linoleic acid autoxidation, α-tocopherol was completely oxidized whatever its initial concentration, while γ-tocopherol underwent partial oxidation and δ-tocopherol was practically unchanged.
Free Radical Research | 2002
Andrew R. Collins; Catherine M. Gedik; Sharon G. Wood; Ann White; Jacques Dubois; Pierre Duez; Jean-François Rees; Rozenn Legall; Liliane Degand; Steffen Loft; Annie Jensen; Henrik E. Poulsen; Allan Weimann; Bente Jensen; Jean Cadet; Thierry Douki; Jean-Luc Ravanat; Henry Faure; Michèle Tripier; Isabelle Morel; Odile Sergent; Pierre Cillard; Bénédicte Morin; Bernd Epe; Nicole Phoa; Andrea Hartwig; Anke Pelzer; Piero Dolara; Chiara Casalini; Francesco Guglielmi
The aim of ESCODD, a European Commission funded Concerted Action, is to improve the precision and accuracy of methods for measuring 8-oxo-7,8-dihydroguanine (8-oxoGua) or the nucleoside (8-oxodG). On two occasions, participating laboratories received samples of different concentrations of 8-oxodG for analysis. About half the results returned (for 8-oxodG) were within 20% of the median values. Coefficients of variation (for three identical samples) were commonly around 10%. A sample of calf thymus DNA was sent, dry, to all laboratories. Analysis of 8-oxoGua/8-oxodG in this sample was a test of hydrolysis methods. Almost half the reported results were within 20% of the median value, and half obtained a CV of less than 10%. In order to test sensitivity, as well as precision, DNA was treated with photosensitiser and light to introduce increasing amounts of 8-oxoGua and samples were sent to members. Median values calculated from all returned results were 45.6 (untreated), 53.9, 60.4 and 65.6 8-oxoGua/10 6 Gua; only seven laboratories detected the increase over the whole range, while all but one detected a dose response over two concentration intervals. Results in this trial reflect a continuing improvement in precision and accuracy. The next challenge will be the analysis of 8-oxodG in DNA isolated from cells or tissue, where the concentration is much lower than in calf thymus DNA.
Free Radical Biology and Medicine | 1992
Isabelle Morel; Josiane Cillard; Gérard Lescoat; Odile Sergent; Nicole Pasdeloup; Aydin Z. Ocaktan; Mohamed A. Abdallah; Pierre Brissot; Pierre Cillard
The protective effect on iron-supplemented hepatocyte cultures of three iron chelators, pyoverdin Pa and hydroxypyrid-4-one derivatives CP20 and CP22, was compared to that of the widely known desferrioxamine B (Desferal:DFO), on the basis of two criteria: (a) their effectiveness in inhibiting free malondialdehyde (MDA) production as an index of iron-induced lipid peroxidation; and (b) their ability to reduce intracellular enzyme leakage. In view of these two markers of iron toxicity, the protective effect of these chelators was classified as follows: DFO > CP20 > or = CP22 > Pa. The mechanism of cellular protection was elucidated by investigating both the iron-chelating activity and the free radical scavenging property of these agents. As concerns the iron chelation, DFO and Pa exerted the same rank order as for cytoprotection (DFO > Pa). The free radical scavenging property toward hydroxyl radical .OH and peroxyl radical ROO. was investigated in a cell-free experimental model. The two siderophores, DFO and Pa, appeared to have a lower antiradical activity toward .OH than hydroxypyrid-4-one CP22. This .OH scavenging activity was classified as follows: CP22 >> Pa > DFO. Moreover, the chelators exhibited for the quenching of ROO. the same order of effectiveness as that observed for cellular protection: DFO > CP20 > or = CP22 > Pa. These data indicate that, in addition to the iron-chelating activity which represents the most important property for determining the protection capacity of these iron chelators, their free radical scavenging ability also must be taken into account. This direct demonstration of a strong association between the free radical scavenging activity and the protective effect of iron chelators further increases the prospects for the development and clinical applications of new oral chelating drugs.
FEBS Letters | 1997
Jocelyne Antras‐Ferry; Karine Mahéo; Fabrice Morel; André Guillouzo; Pierre Cillard; Josiane Cillard
© 1997 Federation of European Biochemical Societies.
Free Radical Biology and Medicine | 1995
Isabelle Morel; Odile Sergent; Pascale Cogrel; Gérard Lescoat; Nicole Pasdeloup; Pierre Brissot; Pierre Cillard; Josiane Cillard
Iron supplementation of hepatocyte culture induced the production of lipid-derived radicals as shown by spin-trapping with alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN). The EPR signal corresponding to POBN/lipid-derived radicals (aN = 15.6 G aH = 2.6 G) was concentration dependent on iron (Fe-NTA) added to the culture medium (50, 100, 200 microM). It was also incubation time dependent (0 to 24 h). The EPR signal could be used as a marker for iron-induced lipid peroxidation. The antioxidant activity of two iron chelators, pyoverdin (Pa) and hydroxypyrid-4-one derivative (CP20) was compared with that of desferrioxamine (DFO) on iron-loaded hepatocyte culture. These compounds (100 microM) were tested either in pretreatment or simultaneously with Fe-NTA (100 microM). In each procedure, the EPR signal obtained from the cells supplemented with iron was substantially reduced in the presence of either DFO or CP20 but not with Pa. Moreover, the DFO and CP20 but not Pa showed protective effect on the leakage of the intracellular enzyme lactate dehydrogenase into the culture medium. The present study described a specific spin-trapping technique in conjunction with EPR spectroscopy that is able to demonstrate the cytoprotective effect of iron chelators, as shown by the elimination of lipid-derived radicals in iron-loaded hepatocyte culture.