Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Couteron is active.

Publication


Featured researches published by Pierre Couteron.


Ecological Monographs | 2012

Community ecology in the age of multivariate multiscale spatial analysis

Stéphane Dray; Raphaël Pélissier; Pierre Couteron; Marie-Josée Fortin; Pierre Legendre; Pedro R. Peres-Neto; E. Bellier; Roger Bivand; F. G. Blanchet; M. De Caceres; Anne-Béatrice Dufour; E. Heegaard; Thibaut Jombart; François Munoz; Jari Oksanen; Jean Thioulouse; Helene H. Wagner

Species spatial distributions are the result of population demography, behavioral traits, and species interactions in spatially heterogeneous environmental conditions. Hence the composition of species assemblages is an integrative response variable, and its variability can be explained by the complex interplay among several structuring factors. The thorough analysis of spatial variation in species assemblages may help infer processes shaping ecological communities. We suggest that ecological studies would benefit from the combined use of the classical statistical models of community composition data, such as constrained or unconstrained multivariate analyses of site-by-species abundance tables, with rapidly emerging and diversifying methods of spatial pattern analysis. Doing so allows one to deal with spatially explicit ecological models of beta diversity in a biogeographic context through the multiscale analysis of spatial patterns in original species data tables, including spatial characterization of fitted or residual variation from environmental models. We summarize here the recent progress for specifying spatial features through spatial weighting matrices and spatial eigenfunctions in order to define spatially constrained or scale-explicit multivariate analyses. Through a worked example on tropical tree communities, we also show the potential of the overall approach to identify significant residual spatial patterns that could arise from the omission of important unmeasured explanatory variables or processes.


Biological Reviews | 2012

Ecophylogenetics: advances and perspectives

Nicolas Mouquet; Vincent Devictor; Christine N. Meynard; François Munoz; Louis Félix Bersier; Jérôme Chave; Pierre Couteron; Ambroise Dalecky; Colin Fontaine; Dominique Gravel; Olivier J. Hardy; Franck Jabot; Sébastien Lavergne; Mathew A. Leibold; David Mouillot; Tamara Münkemüller; Sandrine Pavoine; Andreas Prinzing; Ana S. L. Rodrigues; Rudolf P. Rohr; Elisa Thébault; Wilfried Thuiller

Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast‐growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.


Acta Oecologica-international Journal of Ecology | 1999

Short range co-operativity competing with long range inhibition explains vegetation patterns

Olivier Lejeune; Pierre Couteron; René Lefever

We model the non-local dynamics of vegetation communities and interpret the formation of vegetation patterns as a spatial instability of intrinsic origin: the wavelength of the patterns predicted within the framework of this approach is determined by the parameters governing the dynamics rather than by boundary conditions and/or geometrical constraints. The spatial periodicity results from an interplay between short-range co-operative interactions and long-range self-inhibitory interactions inside the vegetation community. The influence of environmental anisotropies on pattern symmetry and orientation is discussed. As a case study, the approach is applied to a system of vegetation bands situated in the north-west of Burkina Faso. The parameters describing the co-operative and inhibitory interactions at the origin of the patterns are evaluated.


Ecological Applications | 2012

Assessing aboveground tropical forest biomass using Google Earth canopy images

Pierre Ploton; Raphaël Pélissier; Christophe Proisy; Théo Flavenot; Nicolas Barbier; S. N. Rai; Pierre Couteron

Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earths very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted from free Google Earth images.


Scientific Reports | 2015

Seeing Central African forests through their largest trees

Jean-François Bastin; Nicolas Barbier; Maxime Réjou-Méchain; Adeline Fayolle; Sylvie Gourlet-Fleury; Danae Maniatis; T. de Haulleville; Fidèle Baya; Hans Beeckman; D. Beina; Pierre Couteron; G. Chuyong; Gilles Dauby; Jean-Louis Doucet; Vincent Droissart; Marc Dufrêne; Corneille Ewango; Jean-François Gillet; C. H. Gonmadje; Terese B. Hart; T. Kavali; David Kenfack; Moses Libalah; Yadvinder Malhi; Jean-Remy Makana; Raphaël Pélissier; Pierre Ploton; A. Serckx; Bonaventure Sonké; Tariq Stevart

Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.


Journal of Theoretical Biology | 2009

Deeply gapped vegetation patterns: On crown/root allometry, criticality and desertification

René Lefever; Nicolas Barbier; Pierre Couteron; Olivier Lejeune

The dynamics of vegetation is formulated in terms of the allometric and structural properties of plants. Within the framework of a general and yet parsimonious approach, we focus on the relationship between the morphology of individual plants and the spatial organization of vegetation populations. So far, in theoretical as well as in field studies, this relationship has received only scant attention. The results reported remedy to this shortcoming. They highlight the importance of the crown/root ratio and demonstrate that the allometric relationship between this ratio and plant development plays an essential part in all matters regarding ecosystems stability under conditions of limited soil (water) resources. This allometry determines the coordinates in parameter space of a critical point that controls the conditions in which the emergence of self-organized biomass distributions is possible. We have quantified this relationship in terms of parameters that are accessible by measurement of individual plant characteristics. It is further demonstrated that, close to criticality, the dynamics of plant populations is given by a variational Swift-Hohenberg equation. The evolution of vegetation in response to increasing aridity, the conditions of gapped pattern formation and the conditions under which desertification takes place are investigated more specifically. It is shown that desertification may occur either as a local desertification process that does not affect pattern morphology in the course of its unfolding or as a gap coarsening process after the emergence of a transitory, deeply gapped pattern regime. Our results amend the commonly held interpretation associating vegetation patterns with a Turing instability. They provide a more unified understanding of vegetation self-organization within the broad context of matter order-disorder transitions.


Ecology | 2003

CONSISTENCY BETWEEN ORDINATION TECHNIQUES AND DIVERSITY MEASUREMENTS: TWO STRATEGIES FOR SPECIES OCCURRENCE DATA

Raphaël Pélissier; Pierre Couteron; Stéphane Dray; Daniel Sabatier

Both the ordination of taxonomic tables and the measurements of species diversity aim to capture the prominent features of the species composition of a community. However, interrelations between ordination techniques and diversity measurements are sel- dom explicated and are mainly ignored by many field ecologists. This paper starts from the notion of the species occurrence table, which provides a unifying formulation for different kinds of taxonomic data. Here it is demonstrated that alternative species weightings can be used to equate the total inertia of a centered-by-species occurrence table with common diversity indices, such as species richness, Simpson diversity, or Shannon information. Such an equation defines two main ordination strategies related to two different but con- sistent measures of species diversity. The first places emphasis on scarce species and is based on Correspondence Analysis and species richness (CA-richness strategy). The second, in which abundant species are prominent, relies on Non-Symmetric Correspondence Anal- ysis and Simpson diversity (NSCA-Simpson strategy). Both strategies are suitable for mea- suring a. and f3 diversity by analyzing the centered-by-species occurrence table with respect to external environmental or instrumental variables. In this paper, these two strategies are applied to ecological data obtained in a Neotropical rainforest plot. The results are then discussed with respect to the intrinsic characteristics of the community under analysis, and also to the broad classes of floro-faunistic data used in ecology (i.e., data gathered from museum or herbarium collections, exhaustive inventories in a reference plot, or enumeration through species-by-releves tables). The approach en- compasses several well-known techniques such as Correspondence Analysis, Non-Sym- metric Correspondence Analysis, Canonical Correspondence Analysis, and Redundancy Analysis, and provides greater insight into interrelations between ordination methods and diversity studies.


Ecological Monographs | 2012

Determinants and dynamics of banded vegetation pattern migration in arid climates

Vincent Deblauwe; Pierre Couteron; Jan Bogaert; Nicolas Barbier

Dense vegetation bands aligned to contour levels and alternating at regular intervals with relatively barren interbands have been reported at the margins of all tropical deserts. Since their discovery in the 1950s, it has been supposed that these vegetation bands migrate upslope, forming a space-time cyclic pattern. Evidence to date has been relatively sparse and indirect, and observations have remained conflicting. Unequivocal photographic evidence of upslope migration (a few decimeters per year) is provided here for three independent dryland areas exhibiting periodic banded pattern: (1) the U.S. northeastern Chihuahuan Desert, (2) the Somalian Haud, and (3) the Mediterranean steppes of eastern Morocco. Migration speeds, averaged through time and space using Fourier cross-spectral analysis, are shown to be directly proportional to pattern scale (wavelength). A sequence of aerial photographs of the Chihuahuan Desert showed that migration was not continuous, but intermittent in response to fluctuating weather regimes. The rates at which bands expanded upslope and contracted downslope were better predicted by the change in annual rainfall than by its average level. However, the migration of banded patterns cannot be considered as systematic because in our observations of three other banded systems located in the Somalian Haud, central Australia, and western New South Wales, migration was undetectable at the available image resolution. In each of the six sites under study, the modal value of band orientation axes was verified to be approximately orthogonal to the steepest slope. Our results underscore the importance of taking both the spatial structure and the past climate sequence into account for understanding vegetation dynamics in arid to semiarid ecosystems. In addition, we show how Fourier spectral analysis applied to historical series of optical images can serve to quantify landscape dynamics at a decadal time scale.


Ecological Applications | 2014

Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach.

Jean-François Bastin; Nicolas Barbier; Pierre Couteron; Benoît Adams; Aurélie Shapiro; Jan Bogaert; Charles De Cannière

In the context of the reduction of greenhouse gas emissions caused by deforestation and forest degradation (the REDD+ program), optical very high resolution (VHR) satellite images provide an opportunity to characterize forest canopy structure and to quantify aboveground biomass (AGB) at less expense than methods based on airborne remote sensing data. Among the methods for processing these VHR images, Fourier textural ordination (FOTO) presents a good method to detect forest canopy structural heterogeneity and therefore to predict AGB variations. Notably, the method does not saturate at intermediate AGB values as do pixelwise processing of available space borne optical and radar signals. However, a regional-scale application requires overcoming two difficulties: (1) instrumental effects due to variations in sun–scene–sensor geometry or sensor-specific responses that preclude the use of wide arrays of images acquired under heterogeneous conditions and (2) forest structural diversity including monodominant or open canopy forests, which are of particular importance in Central Africa. In this study, we demonstrate the feasibility of a rigorous regional study of canopy texture by harmonizing FOTO indices of images acquired from two different sensors (Geoeye-1 and QuickBird-2) and different sun–scene–sensor geometries and by calibrating a piecewise biomass inversion model using 26 inventory plots (1 ha) sampled across very heterogeneous forest types. A good agreement was found between observed and predicted AGB (residual standard error [RSE] = 15%; R2 = 0.85; P < 0.001) across a wide range of AGB levels from 26 Mg/ha to 460 Mg/ha, and was confirmed by cross validation. A high-resolution biomass map (100-m pixels) was produced for a 400-km2 area, and predictions obtained from both imagery sources were consistent with each other (r = 0.86; slope = 1.03; intercept = 12.01 Mg/ha). These results highlight the horizontal structure of forest canopy as a powerful descriptor of the entire forest stand structure and heterogeneity. In particular, we show that quantitative metrics resulting from such textural analysis offer new opportunities to characterize the spatial and temporal variation of the structure of dense forests and may complement the toolbox used by tropical forest ecologists, managers or REDD+ national monitoring, reporting and verification bodies.


Journal of Tropical Ecology | 2008

Regional variation in tropical forest tree species composition in the Central African Republic: an assessment based on inventories by forest companies

Maxime Réjou-Méchain; Raphaël Pélissier; Sylvie Gourlet-Fleury; Pierre Couteron; Robert Nasi; John D. Thompson

Understanding how species assemblages are structured in relation to environmental variation is a central issue in community ecology. However, factors that create regional variation in relative species abundances have been little studied due to the rarity of large-scale datasets. Here, we investigated a large dataset (30 180 0.5-ha plots spread over 1 600 000 ha) gathered from forest planning inventories in the semi-deciduous forest of the south western Central African Republic. We used Correspondence Analysis and Non-Symmetric Correspondence Analysis on Instrumental Variables to analyse variation in the abundance of 73 common tree species in relation to soil type, rainfall and proximity to villages. Together, environmental variables explained 10.3% of multi-species floristic variation among plots, and the regional spatial structure almost disappeared when the effects of these variables were removed. A Trend Surface Analysis using a third order polynomial function of the geographical coordinates of the plots explained 14.5% of the floristic variation and more than 75% of this variation was explained by environmental variables. Sandy soil was the most influential factor affecting floristic composition. Residual spatial variation not explained by the environmental variables probably reflects the natural and anthropogenic history of the vegetation.

Collaboration


Dive into the Pierre Couteron's collaboration.

Top Co-Authors

Avatar

Nicolas Barbier

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Raphaël Pélissier

French Institute of Pondicherry

View shared research outputs
Top Co-Authors

Avatar

Christophe Proisy

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

François Munoz

French Institute of Pondicherry

View shared research outputs
Top Co-Authors

Avatar

Yves Dumont

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Vincent Deblauwe

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. R. Ramesh

French Institute of Pondicherry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Sabatier

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge