Pierre Eid
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Eid.
Annals of Neurology | 2009
Luca Durelli; Laura Conti; Marinella Clerico; Daniela Boselli; Giulia Contessa; Paolo Ripellino; B. Ferrero; Pierre Eid; Francesco Novelli
T‐helper 1 (Th1) and Th17 lymphocytes are involved in experimental autoimmune encephalomyelitis, the model of multiple sclerosis (MS). We characterized the Th1/Th17 cell populations in peripheral blood (PB), their interferon (IFN) receptor expression sensitivity to IFN‐β in MS patients.
Journal of the National Cancer Institute | 2011
Sandy Azzi; Stefania Bruno; Julien Giron-Michel; Denis Clay; Aurore Devocelle; Michela Croce; Silvano Ferrini; Salem Chouaib; Aimé Vazquez; Bernard Charpentier; Giovanni Camussi; Bruno Azzarone; Pierre Eid
BACKGROUND Many renal cancer patients experience disease recurrence after immunotherapy or combined treatments due to persistence of cancer stem cells (CSCs). The identification of reliable inducers of CSC differentiation may facilitate the development of efficient strategies for eliminating CSCs. We investigated whether interleukin 15 (IL-15), a regulator of kidney homeostasis, induces the differentiation of CD105-positive (CD105(+)) CSCs from human renal cancers. METHODS CD105(+) CSCs were cultured to preserve their stem cell properties and treated with recombinant human IL-15 (rhIL-15) to evaluate their ability to differentiate, to acquire sensitivity to chemotherapeutic drugs, and to form spheroids in vitro and tumors in vivo. Expression of stem cell and epithelial markers were studied by flow cytometry, immunocytochemistry, and immunoblotting. Identification of a CSC side population fraction and its sensitivity to chemotherapy drugs and expression of ATP-binding cassette (ABC) transporters and aldehyde dehydrogenase (ALDH) activities were determined by flow cytometry. Spheroid formation was determined in limiting dilution assay. Xenograft tumors were generated in severe combined immunodeficient mice (n = 12-18 mice per group). All statistical tests were two-sided. RESULTS CD105(+) CSCs treated with rhIL-15 at 10 pg/mL differentiated into cells expressing epithelial markers. rhIL-15 induced epithelial differentiation of all CD105(+) CSCs subsets and blocked CSC self-renewal (sphere-forming ability) and their tumorigenic properties in severe combined immunodeficient mice. Vinblastine and paclitaxel induced statistically significant higher levels of apoptosis in rhIL-15-differentiated epithelial cells compared with CD105(+) CSCs (mean percentage of apoptotic cells, vinblastine: 33% vs 16.5%, difference = 16.5%, 95% confidence interval = 12.25% to 20.74%, P = .0025; paclitaxel: 35% vs 11.6%, difference = 23.4%, 95% confidence interval = 22.5% to 24.24%, P = .0015). The higher sensitivity of rhIL-15-differentiated epithelial cells to chemotherapeutic drugs was associated with loss of detoxifying mechanisms such as ALDH and ABC transporter activities. CONCLUSION IL-15 directs the epithelial differentiation of renal CSCs and meets the criteria for a treatment strategy: CSC pool depletion and generation of differentiated nontumorigenic cells that are sensitive to chemotherapeutic agents.
Cancer Research | 2009
Krystel Khawam; Julien Giron-Michel; Yanhong Gu; Aurélie Perier; Massimo Giuliani; Anne Caignard; Aurore Devocelle; Silvano Ferrini; Marina Fabbi; B. Charpentier; Andreas Ludwig; Salem Chouaib; Bruno Azzarone; Pierre Eid
Although interleukin-15 (IL-15) is a powerful immunomodulatory factor that has been proposed for cancer immunotherapy, its intratumoral expression may be correlated with tumor progression and/or poor clinical outcome. Therefore, neoplasias potentially sensitive to immunotherapy should be checked for their IL-15 expression and function before choosing immunotherapy protocols. Primary human renal cancer cells (RCC) express a novel form of membrane-bound IL-15 (mb-IL-15), which displays three major original properties: (a) It is expressed as a functional membrane homodimer of 27 kDa, (b) it is shed in the extracellular environment by the metalloproteases ADAM17 and ADAM10, and (c) its stimulation by soluble IL-15 receptor alpha (s-IL-15Ralpha) chain triggers a complex reverse signal (mitogen-activated protein kinases, FAK, pMLC) necessary and sufficient to ~induce epithelial-mesenchymal transdifferentiation (EMT), a crucial process in tumor progression whose induction is unprecedented for IL-15. In these cells, complete EMT is characterized by a dynamic reorganization of the cytoskeleton with the subsequent generation of a mesenchymal/contractile phenotype (alpha-SMA and vimentin networks) and the loss of the epithelial markers E-cadherin and ZO-1. The retrosignaling functions are, however, hindered through an unprecedented cytokine/receptor interaction of mb-IL-15 with membrane-associated IL-15Ralpha subunit that tunes its signaling potential competing with low concentrations of the s-IL-15Ralpha chain. Thus, human RCC express an IL-15/IL-15R system, which displays unique biochemical and functional properties that seem to be directly involved in renal tumoral progression.
European Journal of Immunology | 2009
Dorothée Duluc; Fang Tan; Mari Scotet; Simon Blanchard; Isabelle Frémaux; Erwan Garo; Branka Horvat; Pierre Eid; Yves Delneste; Pascale Jeannin
NK lymphocytes and type I IFN (IFN‐α/β) are major actors of the innate anti‐viral response that also influence adaptive immune responses. We evaluated type I IFN production by human NK cells in response to polyI:C, a potent type I IFN‐inducing TLR3 agonist. PolyI:C plus IL‐2/IL‐12 induced IFN‐β (but not IFN‐α) mRNA expression and protein production by highly pure human NK cells and by the human NK cell line NK92. Neutralizing anti‐IFNAR1 or anti‐IFN‐β Ab prevented the production of IFN‐γ induced by polyI:C plus IL‐2/IL‐12. Similarly, IFN‐γ production induced by polyI:C plus IL‐12 was reduced in NK cells isolated from IFNAR1−/− compared with WT mice. The ability of polyI:C plus IL‐12 to induce IFN‐γ production was related to an increase of TLR3, Mda5 and IFNAR expression and by an increase of STAT1 and STAT4 phosphorylation. Collectively, these data demonstrate that NK cells, in response to polyI:C plus IL‐2/IL‐12, produce IFN‐β that induce, in an autocrine manner, the production of IFN‐γ and thereby highlight that NK cells may control the outcome of protective or injurious immune responses through type I IFN secretion.
Journal of Pediatric Hematology Oncology | 2009
Tu-Anh Tran; Monique Fabre; Danièle Pariente; Irina Craiu; Julien Haroche; Frédéric Charlotte; Pierre Eid; Antoine Durrbach; Yassine Taoufik; Isabelle Koné-Paut
Erdheim-Chester disease is a rare, non-Langerhans systemic histiocytosis characterized by bilateral sclerosis of the metaphyseal regions of the long bones and infiltration in other organs. The histopathologic hallmark is defined by a mononuclear infiltrate of foamy histiocytes and rare pathognomonic Touton giant cells with extensive fibrosis. This condition is exceptional in children. We report here a case of Erdheim-Chester disease in a 10-year-old girl with retroperitoneal infiltration and bone involvement, for whom the diagnosis was only established after a 3-year course with multiple biopsies. It is also the first pediatric case successfully treated with interferon-alpha suggesting that interferon-alpha can be a safe and efficient first-line therapy for this disease in children.
PLOS ONE | 2011
Marie-Ghislaine de Goër de Herve; Deniz Durali; Bamory Dembele; Massimo Giuliani; Tu-Anh Tran; Bruno Azzarone; Pierre Eid; Marc Tardieu; J.-F. Delfraissy; Yassine Taoufik
B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells) producing a Th-1-like cytokine pattern and the other (Be2) producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.
PLOS ONE | 2012
Julien Giron-Michel; Sandy Azzi; Krystel Khawam; Erwan Mortier; Anne Caignard; Aurore Devocelle; Silvano Ferrini; Michela Croce; Hélène François; L. Lecru; Bernard Charpentier; Salem Chouaib; Bruno Azzarone; Pierre Eid
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidneys components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15Rαβγc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the γc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of γc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the γc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15Rαβ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/γc-dependent signaling (STAT5), by co-transfecting γc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and γc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation).
Oncotarget | 2016
Meriem Hasmim; Stefania Bruno; Sandy Azzi; Cindy Gallerne; Julien Giron Michel; Giulia Chiabotto; Vincent Lecoz; Cristina Romei; Grazia Maria Spaggiari; Annalisa Pezzolo; Vito Pistoia; Eric Angevin; Sophie Gad; Sophie Ferlicot; Yosra Messai; Claudine Kieda; Denis Clay; Federica Sabatini; Bernard Escudier; Giovanni Camussi; Pierre Eid; Bruno Azzarone; Salem Chouaib
As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets.
Cytokine & Growth Factor Reviews | 2013
Julien Giron-Michel; Sandy Azzi; Silvano Ferrini; Salem Chouaib; Giovanni Camussi; Pierre Eid; Bruno Azzarone
Experiments in IL-15(-/-) and IL-15Rα(-/-) mice show that intra-renal IL-15, through IL-15Rα behaves as an epithelial survival factor. Recent data highlight new functions of IL-15 in renal homeostasis mediated by IL-15Rγ (CD132). Indeed, in CD132+ renal epithelial tubular cells IL-15 preserves E-cadherin expression inhibiting epithelial-mesenchymal transition (EMT). By contrast, during allograft rejection, the increased intra-graft IL-15 expression favors tubular destruction facilitating the intraepithelial recruitment of CD8 T cells expressing the E-cadherin ligand CD103. In renal cancer, loss of CD132 by epithelial cells defines a tumoral microenvironment where IL-15 triggers E-cadherin down-regulation and EMT. Finally, in CD132+ renal cancer stem cells IL-15 induces the generation of non-tumorigenic epithelial cells sensitive to cytotoxic drugs. These findings are discussed in the light of IL-15-based immunotherapy for renal cancer.
Neoplasia | 2015
Sandy Azzi; Cindy Gallerne; Cristina Romei; Vincent Le Coz; Rosaria Gangemi; Krystel Khawam; Aurore Devocelle; Yanhong Gu; Stefania Bruno; Silvano Ferrini; Salem Chouaib; Pierre Eid; Bruno Azzarone; Julien Giron-Michel
Intrarenal interleukin-15 (IL-15) participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15) isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC) to peritumoral (ptumTEC), tumoral (RCC), and cancer stem cells (CSC/CD105+). RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα) chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15) isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα). This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa) displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression.