Pierre-Emmanuel Gleizes
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre-Emmanuel Gleizes.
American Journal of Human Genetics | 2008
Hanna T. Gazda; Mee Rie Sheen; Adrianna Vlachos; Valérie Choesmel; Marie-Françoise O'Donohue; Hal E. Schneider; Natasha Darras; Catherine Hasman; Colin A. Sieff; Peter E. Newburger; Sarah E. Ball; Edyta Niewiadomska; Michał Matysiak; Jan Maciej Zaucha; Bertil Glader; Charlotte M. Niemeyer; Joerg J. Meerpohl; Eva Atsidaftos; Jeffrrey M. Lipton; Pierre-Emmanuel Gleizes; Alan H. Beggs
Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in approximately 30%-50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.
Stem Cells | 1997
Pierre-Emmanuel Gleizes; John S. Munger; Irene Nunes; John G. Harpel; Roberta Mazzieri; Irene Noguera; Daniel B. Rifkin
Transforming growth factor (TGF‐)β is secreted as a latent complex in which the mature growth factor remains associated with its propeptide. In order to elicit a biological response, the cytokine must be released from the latent complex, a process termed latent TGF‐β activation or TGF‐β formation. Although latent TGF‐β activation is a critical step in the regulation of its activity, little is known about the molecular mechanisms that lead to the production of active TGF‐β. In this article, we present an overview of the data available on this topic, and we propose a tentative model for the mechanism of TGF‐β formation based upon the observations with different cell systems and on recent findings on the structure of the latent TGF‐β complex.
The EMBO Journal | 2001
Cosmin Saveanu; David Bienvenu; Abdelkader Namane; Pierre-Emmanuel Gleizes; Nicole Gas; Alain Jacquier; Micheline Fromont-Racine
Eukaryotic ribosome maturation depends on a set of well ordered processing steps. Here we describe the functional characterization of yeast Nog2p (Ynr053cp), a highly conserved nuclear protein. Nog2p contains a putative GTP‐binding site, which is essential in vivo. Kinetic and steady‐state measurements of the levels of pre‐rRNAs in Nog2p‐depleted cells showed a defect in 5.8S and 25S maturation and a concomitant increase in the levels of both 27SBS and 7SS precursors. We found Nog2p physically associated with large pre‐60S complexes highly enriched in the 27SB and 7S rRNA precursors. These complexes contained, besides a subset of ribosomal proteins, at least two additional factors, Nog1p, another putative GTP‐binding protein, and Rlp24p (Ylr009wp), which belongs to the Rpl24e family of archaeal and eukaryotic ribosomal proteins. In the absence of Nog2p, the pre‐60S ribosomal complexes left the nucleolus, but were retained in the nucleoplasm. These results suggest that transient, possibly GTP‐dependent association of Nog2p with the pre‐ribosomes might trigger late rRNA maturation steps in ribosomal large subunit biogenesis.
Wiley Interdisciplinary Reviews - Rna | 2015
Anthony K. Henras; Célia Plisson-Chastang; Marie-Françoise O'Donohue; Anirban Chakraborty; Pierre-Emmanuel Gleizes
Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre‐ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans‐acting factors chaperone this process, including small nucleolar ribonucleoparticles. While yeast has been the gold standard for studying the molecular basis of this process, recent technical advances have allowed to further define the mechanisms of ribosome biogenesis in animals and plants. This renewed interest for a long‐lasting question has been fueled by the association of several genetic diseases with mutations in genes encoding both ribosomal proteins and ribosome biogenesis factors, and by the perspective of new anticancer treatments targeting the mechanisms of ribosome synthesis. A consensus scheme of pre‐ribosomal RNA maturation is emerging from studies in various kinds of eukaryotic organisms. However, major differences between mammalian and yeast pre‐ribosomal RNA processing have recently come to light. WIREs RNA 2015, 6:225–242. doi: 10.1002/wrna.1269
American Journal of Human Genetics | 2010
Leana Doherty; Mee Rie Sheen; Adrianna Vlachos; Valérie Choesmel; Marie-Françoise O'Donohue; Catherine Clinton; Hal E. Schneider; Colin A. Sieff; Peter E. Newburger; Sarah E. Ball; Edyta Niewiadomska; Michał Matysiak; Bertil Glader; Robert J. Arceci; Jason E. Farrar; Eva Atsidaftos; Jeffrrey M. Lipton; Pierre-Emmanuel Gleizes; Hanna T. Gazda
Diamond-Blackfan anemia (DBA), an inherited bone marrow failure syndrome characterized by anemia that usually presents before the first birthday or in early childhood, is associated with birth defects and an increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart, and urinary system defects that are present in approximately 30%-50% of patients. DBA has been associated with mutations in seven ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7, in about 43% of patients. To continue our large-scale screen of RP genes in a DBA population, we sequenced 35 ribosomal protein genes, RPL15, RPL24, RPL29, RPL32, RPL34, RPL9, RPL37, RPS14, RPS23, RPL10A, RPS10, RPS12, RPS18, RPL30, RPS20, RPL12, RPL7A, RPS6, RPL27A, RPLP2, RPS25, RPS3, RPL41, RPL6, RPLP0, RPS26, RPL21, RPL36AL, RPS29, RPL4, RPLP1, RPL13, RPS15A, RPS2, and RPL38, in our DBA patient cohort of 117 probands. We identified three distinct mutations of RPS10 in five probands and nine distinct mutations of RPS26 in 12 probands. Pre-rRNA analysis in lymphoblastoid cells from patients bearing mutations in RPS10 and RPS26 showed elevated levels of 18S-E pre-rRNA. This accumulation is consistent with the phenotype observed in HeLa cells after knockdown of RPS10 or RPS26 expression with siRNAs, which indicates that mutations in the RPS10 and RPS26 genes in DBA patients affect the function of the proteins in rRNA processing.
The EMBO Journal | 2005
Jacques Rouquette; Valérie Choesmel; Pierre-Emmanuel Gleizes
It is generally assumed that, in mammalian cells, preribosomal RNAs are entirely processed before nuclear exit. Here, we show that pre‐40S particles exported to the cytoplasm in HeLa cells contain 18S rRNA extended at the 3′ end with 20–30 nucleotides of the internal transcribed spacer 1. Maturation of this pre‐18S rRNA (which we named 18S‐E) involves a cytoplasmic protein, the human homolog of the yeast kinase Rio2p, and appears to be required for the translation competence of the 40S subunit. By tracking the nuclear exit of this precursor, we have identified the ribosomal protein Rps15 as a determinant of preribosomal nuclear export in human cells. Interestingly, inhibition of exportin Crm1/Xpo1 with leptomycin B strongly alters processing of the 5′‐external transcribed spacer, upstream of nuclear export, and reveals a new cleavage site in this transcribed spacer. Completion of the maturation of the 18S rRNA in the cytoplasm, a feature thought to be unique to yeast, may prevent pre‐40S particles from initiating translation with pre‐mRNAs in eukaryotic cells. It also allows new strategies for the study of preribosomal transport in mammalian cells.
Journal of Biological Chemistry | 1996
Pierre-Emmanuel Gleizes; Ronald C. Beavis; Roberta Mazzieri; Bin Shen; Daniel B. Rifkin
Most cultured cell types secrete small latent transforming growth factor-β (TGF-β) as a disulfide-bonded complex with a member of the latent TGF-β binding protein (LTBP) family. Using the baculovirus expression system, we have mapped the domain of LTBP-1 mediating covalent association with small latent TGF-β1. Coexpression in Sf9 cells of small latent TGF-β1 with deletion mutants of LTBP-1 showed that the third eight-cysteine repeat of LTBP-1 is necessary and sufficient for covalent interaction with small latent TGF-β1. Analysis by mass spectrometry of this eight-cysteine repeat, produced as a recombinant peptide in Sf9 cells, confirmed that it was N-glycosylated, as expected from the primary sequence. No other post-translational modifications of this domain were detected. Alkylation of the recombinant peptide with vinyl pyridine failed to reveal any free cysteines, indicating that, in the absence of small latent TGF-β, the eight cysteines of this domain are engaged in intramolecular bonds. These data demonstrate that the third LTBP-1 eight-cysteine repeat recognizes and associates covalently with small latent TGF-β1 through a mechanism that does not require any specific post-translational modification of this domain. They also suggest that this domain adopts different conformations depending on whether it is free or bound to small latent TGF-β.
Journal of Cell Biology | 2010
Marie-Françoise O’Donohue; Valérie Choesmel; Marlène Faubladier; Gwennaële Fichant; Pierre-Emmanuel Gleizes
Subsets of 40S ribosomal subunits are required for initiating rRNA processing, rRNA maturation, and nuclear export.
Journal of Biological Chemistry | 2005
Isabelle Léger-Silvestre; Jacqueline Marie Caffrey; Rosy Dawaliby; Diana Alehandrovna Alvarez-Arias; Nicole Gas; Salvatore J. Bertolone; Pierre-Emmanuel Gleizes; Steven R. Ellis
Approximately 25% of cases of Diamond Blackfan anemia, a severe hypoplastic anemia, are linked to heterozygous mutations in the gene encoding ribosomal protein S19 that result in haploinsufficiency for this protein. Here we show that deletion of either of the two genes encoding Rps19 in yeast severely affects the production of 40 S ribosomal subunits. Rps19 is an essential protein that is strictly required for maturation of the 3′-end of 18 S rRNA. Depletion of Rps19 results in the accumulation of aberrant pre-40 S particles retained in the nucleus that fail to associate with pre-ribosomal factors involved in late maturation steps, including Enp1, Tsr1, and Rio2. When introduced in yeast Rps19, amino acid substitutions found in Diamond Blackfan anemia patients induce defects in the processing of the pre-rRNA similar to those observed in cells under-expressing Rps19. These results uncover a pivotal role of Rps19 in the assembly and maturation of the pre-40 S particles and demonstrate for the first time the effect of Diamond Blackfan anemia-associated mutations on the function of Rps19, strongly connecting the pathology to ribosome biogenesis.
The EMBO Journal | 2001
Emmanuel Vanrobays; Pierre-Emmanuel Gleizes; Cécile Bousquet-Antonelli; Jacqueline Noaillac-Depeyre; Michèle Caizergues-Ferrer; Jean-Paul Gélugne
Numerous non‐ribosomal trans‐acting factors involved in pre‐ribosomal RNA processing have been characterized, but none of them is specifically required for the last cytoplasmic steps of 18S rRNA maturation. Here we demonstrate that Rio1p/Rrp10p is such a factor. Previous studies showed that the RIO1 gene is essential for cell viability and conserved from archaebacteria to man. We isolated a RIO1 mutant in a screen for mutations synthetically lethal with a mutant allele of GAR1, an essential gene required for 18S rRNA production and rRNA pseudouridylation. We show that RIO1 encodes a cytoplasmic non‐ribosomal protein, and that depletion of Rio1p blocks 18S rRNA production leading to 20S pre‐rRNA accumulation. In situ hybridization reveals that, in Rio1p depleted cells, 20S pre‐rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. This strongly suggests that Rio1p is involved in the cytoplasmic cleavage of 20S pre‐rRNA at site D, producing mature 18S rRNA. Thus, Rio1p has been renamed Rrp10p (ribosomal RNA processing #10). Rio1p/Rrp10p is the first non‐ribosomal factor characterized specifically required for 20S pre‐rRNA processing.