Pierre F. Neuenschwander
University of Texas Health Science Center at Tyler
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre F. Neuenschwander.
Molecular Microbiology | 2006
Murty V. V. S. Madiraju; Meredith Moomey; Pierre F. Neuenschwander; Syed Muniruzzaman; Kohji Yamamoto; Julia E. Grimwade; Malini Rajagopalan
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram‐negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram‐positive), we investigated interactions of M. tuberculosis DnaA (DnaATB) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaATB promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaATB proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non‐viability, presumably due to a defect in oriC–DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaATB bound to DnaA boxes similarly with ATP or ADP. DnaATB binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.
The Journal of Infectious Diseases | 2014
Renuka Subramaniam; Peter F. Barnes; Kalyn Fletcher; Vijay Boggaram; Zachary Hillberry; Pierre F. Neuenschwander; Homayoun Shams
Seasonal and especially pandemic influenza predispose patients to secondary bacterial pneumonias, which are a major cause of deaths and morbidity. Staphylococcus aureus is a particularly common and deadly form of post-influenza pneumonia, and increasing staphylococcal drug resistance makes the development of new therapies urgent. We explored an innate immune-mediated model of the lung to define novel mechanisms by which the host can be protected against secondary staphylococcal pneumonia after sub-lethal influenza infection. We found that stimulating the innate immunity in the lung by overexpression of GM-CSF will result in resistance to S. aureus pneumonia after sublethal influenza infection. Resistance was mediated by alveolar macrophages and neutrophils, and was associated with increased production of reactive oxygen species (ROS) by alveolar macrophages. Resistance was abrogated by treatment with agents that scavenged ROS. We conclude that stimulating innate immunity in the lung markedly reduces susceptibility to post-influenza staphylococcal pneumonia and that this may represent a novel immunomodulatory strategy for prevention and treatment of secondary bacterial pneumonia after influenza.
Analytical Biochemistry | 2002
Andreas Walter Rufer; Pierre F. Neuenschwander; Brian Sauer
To study target site selectivity of one important class of DNA-binding proteins, site-specific DNA recombinases, we developed an automated real-time kinetic assay based on surface plasmon resonance (BIACORE) and formulated a curve-fitting model that takes into account cooperative interactions. Monitoring the interaction between the Cre DNA recombinase and its specific target site loxP by BIACORE, we found that Cre associates with loxP tightly and highly cooperatively. We observed that the cooperative moment of the Cre-loxP interaction is strongly dependent on the concentration of spermidine, a small polyamine influencing DNA conformation. Thus, DNA conformation can have a profound impact on substrate recognition and subsequent recombination.
american thoracic society international conference | 2009
Sreerama Shetty; Yashodhar P. Bhandary; Shwetha K. Shetty; Thirunavukkarasu Velusamy; Praveenkumar Shetty; Khalil Bdeir; Margaret R. Gyetko; Douglas B. Cines; Steven Idell; Pierre F. Neuenschwander; Clemens Ruppert; Andreas Guenther; Edward Abraham; Rashmi S. Shetty
RATIONALE Urokinase-type plasminogen activator (uPA) regulates extracellular proteolysis in lung injury and repair. Although alveolar expression of uPA increases, procoagulant activity predominates. OBJECTIVES This study was designed to investigate whether uPA alters the expression of tissue factor (TF), the major initiator of the coagulation cascade, in lung epithelial cells (ECs). METHODS Bronchial, primary airway ECs and C57B6 wild-type, uPA-deficient (uPA(-/-)) mice were exposed to phosphate-buffered saline, uPA, or LPS. Immunohistochemistry, protein, cellular, and molecular techniques were used to assess TF expression and activity. MEASUREMENTS AND MAIN RESULTS uPA enhanced TF mRNA and protein expression, and TF-dependent coagulation in lung ECs. uPA-induced expression of TF involves both increased synthesis and enhanced stabilization of TF mRNA. uPA catalytic activity had little effect on induction of TF. By contrast, deletion of the uPA receptor binding growth factor domain from uPA markedly attenuated the induction of TF, suggesting that uPA receptor binding is sufficient for TF induction. Lung tissues of uPA-deficient mice expressed less TF protein and mRNA compared with wild-type mice. In addition, intratracheal instillation of mouse uPA increased TF mRNA and protein expression and accelerated coagulation in lung tissues. uPA(-/-) mice exposed to LPS failed to induce TF. CONCLUSIONS uPA increased TF expression and TF-dependent coagulation in the lungs of mice. We hypothesize that uPA-mediated induction of TF occurs in lung ECs to promote increased fibrin deposition in the airways during acute lung injury.
PLOS ONE | 2015
Renuka Subramaniam; Zachary Hillberry; Han Chen; Yan Feng; Kalyn Fletcher; Pierre F. Neuenschwander; Homayoun Shams
Background Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production. Results Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM). In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV. Conclusion We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection.
Journal of Nanotechnology | 2017
Shih Feng Chou; Simi Gunaseelan; Mhd Hussam Hijazi Kiellani; Venkata Vamsi Krishna Thottempudi; Pierre F. Neuenschwander; Huarong Nie
The two major topics concerning the development of nanomedicine are drug delivery and tissue engineering. With the advance in nanotechnology, scientists and engineers now have the ability to fabricate functional drug carriers and/or biomaterials that deliver and release drugs locally as well as promote tissue regeneration. In this short review, we address the use of nanotechnology in the fabrication of biomaterials (i.e., nanoparticles and nanofibers) and their therapeutic function in wound healing as dressing materials. Furthermore, we discuss the use of surface nanofeatures to regulate cell adhesion, migration, proliferation, and differentiation, which is a crucial step in wound healing associated with tissue regeneration. Given that nanotechnology-based biomaterials exhibit superior pharmaceutical performance as compared to the traditional medicine, this short review provides current status and future directions of how nanotechnology is and will be used in biomedical field, especially in wound healing.
Mucosal Immunology | 2016
Renuka Subramaniam; S Mukherjee; Han Chen; Shiva Keshava; Pierre F. Neuenschwander; Homayoun Shams
Cigarette smoke has been associated with susceptibility to different pulmonary and airway diseases. Impaired alveolar macrophages (AMs) that are major phagocytes in the lung have been associated with patients with airway diseases and active smokers. In the current report, we show that exposure to second-hand cigarette smoke (SHS) significantly reduced efferocytosis in vivo. More importantly, delivery of recombinant granulocyte–macrophage colony-stimulating factor (GM-CSF) to the alveolar space restored and refurbished the efferocytosis capability of AMs. Exposure to SHS significantly reduced expression of CD16/32 on AMs, and treatment with GM-CSF not only restored but also significantly increased the expression of CD16/32 on AMs. GM-CSF treatment increased uptake and digestion/removal of apoptotic cells by AMs. The latter was attributed to increased expression of Rab5 and Rab7. Increased efferocytosis of AMs was also tested in a disease condition. AMs from GM-CSF-treated, influenza-infected, SHS-exposed mice showed significantly better efferocytosis activity, and mice had significantly less morbidity compared with phosphate-buffered saline-treated group. GM-CSF-treated mice had increased amphiregulin levels in the lungs, which in addition to efferocytosis of AMs may have attributed to their protection against influenza. These results will have great implications for developing therapeutic approaches by harnessing mucosal innate immunity to treat lung and airway diseases and protect against pneumonia.
Journal of Thrombosis and Haemostasis | 2012
Pierre F. Neuenschwander; Kimberly J. Deadmond; Karla Zepeda; Joshua Rutland
Summary. Background: A key feature of factor IXa is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Although several small molecules have been found to be capable of partially affecting FIXa function (i.e. ethylene glycol, Ca2+, and low molecular weight heparin [LMWH]), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. As these effects provide hints about potential regulatory forces that may be operational in the full expression of FIXa coagulant activity, their description remains of great interest. Studies of crystal structures have yielded insights into the structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences for FIXa function.Objectives: To correlate structural changes induced by these modulators with defined consequences for FIXa substrate discrimination and function.Methods: A peptidomics‐based mass spectrometry (MS) approach was used to examine the patterns of hydrolysis of four combinatorial chemistry‐derived pentapeptide libraries by FIXa under various conditions in a soluble, active enzyme system.Results: Ethylene glycol specifically altered the S3 subsite of FIXa to render it more tolerant to side chains at the P3 substrate position, whereas Ca2+ enhanced tolerance at the S2 subsite. In contrast, LMWH altered both the S2 and S1′ subsites.Conclusions: These results demonstrate the role of plasticity in regulating FIXa function with respect to discrimination of extended substrate sequences, as well as providing crucial insights into active site modulations that may be capitalized on by various physiologic cofactors of FIXa and in future drug design.
American Journal of Pathology | 2013
Yashodhar P. Bhandary; Shwetha K. Shetty; Amarnath S. Marudamuthu; Hong Long Ji; Pierre F. Neuenschwander; Vijay Boggaram; Gilbert F. Morris; Jian Fu; Steven Idell; Sreerama Shetty
Tuberculosis | 2011
Xiuhua Pang; Guangxiang Cao; Pierre F. Neuenschwander; Shelley E. Haydel; Guihua Hou; Susan T. Howard