Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Faou is active.

Publication


Featured researches published by Pierre Faou.


Cell | 2015

Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival

Amelia J. Johnston; Kate T. Murphy; Laura Jenkinson; David Laine; Kerstin Emmrich; Pierre Faou; Ross. Weston; Krishnath M. Jayatilleke; Jessie Schloegel; Gert H. Talbo; Joanne L. Casey; Vita Levina; W. Wei-Lynn Wong; Helen Dillon; Tushar Sahay; Joan Hoogenraad; Holly Anderton; Cathrine Hall; Pascal Schneider; Maria C. Tanzer; Michael Foley; Andrew M. Scott; Paul Gregorevic; Spring Yingchun Liu; Linda C. Burkly; Gordon S. Lynch; John Silke; Nicholas J. Hoogenraad

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.


Nucleic Acids Research | 2011

Human 2′-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

Jesper Buchhave Poulsen; Kasper Røjkjær Andersen; Karina Hansen Kjær; Fiona Durand; Pierre Faou; Anna Lindeløv Vestergaard; Gert H. Talbo; Nicholas J. Hoogenraad; Ditlev E. Brodersen; Just Justesen; Pia Møller Martensen

The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′–5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′–5′-oligoadenylate synthetases. These unusual oligonucleotides activate RNase L, an unspecific endoribonuclease that mediates viral and cellular RNA breakdown. Subsequently, the 2-5As are removed by a 2′-phosphodiesterase (2′-PDE), an enzyme that apart from breaking 2′–5′ bonds also degrades regular, 3′–5′-linked oligoadenylates. Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2′-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2′-PDE, apart from playing a role in the cellular immune system, may also function in mitochondrial RNA turnover.


Biochimica et Biophysica Acta | 2012

Tom34: A cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import

Pierre Faou; Nicholas J. Hoogenraad

Most mitochondrial membrane proteins are synthesized in the cytosol and must be delivered to the organelle in an unfolded, import competent form. In mammalian cells, the cytosolic chaperones Hsp90 and Hsp70 are part of a large cytosolic complex that deliver the membrane protein to the mitochondrion by docking with the import receptor Tom70. These two abundant chaperones have other functions in the cell suggesting that the specificity for the targeting of mitochondrial proteins requires the addition of specific factors within the targeting complex. We identify Tom34 as a cochaperone of Hsp70/Hsp90 in mitochondrial protein import. We show that Tom34 is an integral component with Hsp70 and Hsp90 in the large complex. We also demonstrate the role of Tom34 in the mitochondrial import process, as the addition of an excess of Tom34 prevents efficient mitochondrial translocation of precursor proteins that have requirements for Hsp70/Hsp90. Tom34 exhibits an affinity for mitochondrial preproteins of the Tom70 translocation pathway as demonstrated by binding assays using in vitro translated proteins as baits. In addition, we examined the specificity and the size of different complex cytosolic machines. Separation of different radiolabeled cell-free translated proteins on Native-PAGE showed the presence of a high molecular weight complex which binds hydrophobic proteins. Importantly we show that the formation of the chaperone cytosolic complex that mediates the targeting of proteins to the mitochondria contains Tom34 and assembles in the presence of a fully translated substrate protein.


Scientific Reports | 2016

Structure and Function of Cyanobacterial DHDPS and DHDPR

Janni B. Christensen; T. P. Soares da Costa; Pierre Faou; F. Grant Pearce; Santosh Panjikar; Matthew A. Perugini

Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.


Frontiers in Plant Science | 2015

Extracellular peptidases of the cereal pathogen Fusarium graminearum

Rohan G. T. Lowe; Owen C McCorkelle; Mark R. Bleackley; Christine Collins; Pierre Faou; Suresh Mathivanan; Marilyn A. Anderson

The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.


Frontiers in Neurology | 2016

A Pathway Proteomic Profile of Ischemic Stroke Survivors Reveals Innate Immune Dysfunction in Association with Mild Symptoms of Depression – A Pilot Study

Vinh Nguyen; Leeanne M. Carey; Loretta Giummarra; Pierre Faou; Ira R. Cooke; David W. Howells; Tamara Tse; S. Lance Macaulay; Henry Ma; Stephen M. Davis; Geoffrey A. Donnan; Sheila G. Crewther

Depression after stroke is a common occurrence, raising questions as to whether depression could be a long-term biological and immunological sequela of stroke. Early explanations for post-stroke depression (PSD) focused on the neuropsychological/psychosocial effects of stroke on mobility and quality of life. However, recent investigations have revealed imbalances of inflammatory cytokine levels in association with PSD, though to date, there is only one published proteomic pathway analysis testing this hypothesis. Thus, we examined the serum proteome of stroke patients (n = 44, mean age = 63.62 years) and correlated these with the Montgomery–Åsberg Depression Rating Scale (MADRS) scores at 3 months post-stroke. Overall, the patients presented with mild depression symptoms on the MADRS, M = 6.40 (SD = 7.42). A discovery approach utilizing label-free relative quantification was employed utilizing an LC-ESI–MS/MS coupled to a LTQ-Orbitrap Elite (Thermo-Scientific). Identified peptides were analyzed using the gene set enrichment approach on several different genomic databases that all indicated significant downregulation of the complement and coagulation systems with increasing MADRS scores. Complement and coagulation systems are traditionally thought to play a key role in the innate immune system and are established precursors to the adaptive immune system through pro-inflammatory cytokine signaling. Both systems are known to be globally affected after ischemic or hemorrhagic stroke. Thus, our results suggest that lowered complement expression in the periphery in conjunction with depressive symptoms post-stroke may be a biomarker for incomplete recovery of brain metabolic needs, homeostasis, and inflammation following ischemic stroke damage. Further proteomic investigations are now required to construct the temporal profile, leading from acute lesion damage to manifestation of depressive symptoms. Overall, the findings provide support for the involvement of inflammatory and immune mechanisms in PSD symptoms and further demonstrate the value and feasibility of the proteomic approach in stroke research.


BMC Biology | 2015

The recently identified modifier of murine metastable epialleles, Rearranged L-Myc Fusion, is involved in maintaining epigenetic marks at CpG island shores and enhancers

Sarah K. Harten; Harald Oey; Lauren M. Bourke; Vandhana Bharti; Luke Isbel; Lucia Daxinger; Pierre Faou; Neil O. Robertson; Jacqueline M. Matthews; Emma Whitelaw

BackgroundWe recently identified a novel protein, Rearranged L-myc fusion (Rlf), that is required for DNA hypomethylation and transcriptional activity at two specific regions of the genome known to be sensitive to epigenetic gene silencing. To identify other loci affected by the absence of Rlf, we have now analysed 12 whole genome bisulphite sequencing datasets across three different embryonic tissues/stages from mice wild-type or null for Rlf.ResultsHere we show that the absence of Rlf results in an increase in DNA methylation at thousands of elements involved in transcriptional regulation and many of the changes occur at enhancers and CpG island shores. ChIP-seq for H3K4me1, a mark generally found at regulatory elements, revealed associated changes at many of the regions that are differentially methylated in the Rlf mutants. RNA-seq showed that the numerous effects of the absence of Rlf on the epigenome are associated with relatively subtle effects on the mRNA population. In vitro studies suggest that Rlf’s zinc fingers have the capacity to bind DNA and that the protein interacts with other known epigenetic modifiers.ConclusionThis study provides the first evidence that the epigenetic modifier Rlf is involved in the maintenance of DNA methylation at enhancers and CGI shores across the genome.


Journal of Proteome Research | 2014

Proteogenomic Analysis of the Venturia pirina (Pear Scab Fungus) Secretome Reveals Potential Effectors

Ira R. Cooke; Daniel Jones; Joanna K. Bowen; Cecilia Deng; Pierre Faou; Nathan E. Hall; Vignesh Jayachandran; Michael Liem; Adam P. Taranto; Kim M. Plummer; Suresh Mathivanan

A proteogenomic analysis is presented for Venturia pirina, a fungus that causes scab disease on European pear (Pyrus communis). V. pirina is host-specific, and the infection is thought to be mediated by secreted effector proteins. Currently, only 36 V. pirina proteins are catalogued in GenBank, and the genome sequence is not publicly available. To identify putative effectors, V. pirina was grown in vitro on and in cellophane sheets mimicking its growth in infected leaves. Secreted extracts were analyzed by tandem mass spectrometry, and the data (ProteomeXchange identifier PXD000710) was queried against a protein database generated by combining in silico predicted transcripts with six frame translations of a whole genome sequence of V. pirina (GenBank Accession JEMP00000000 ). We identified 1088 distinct V. pirina protein groups (FDR 1%) including 1085 detected for the first time. Thirty novel (not in silico predicted) proteins were found, of which 14 were identified as potential effectors based on characteristic features of fungal effector protein sequences. We also used evidence from semitryptic peptides at the protein N-terminus to corroborate in silico signal peptide predictions for 22 proteins, including several potential effectors. The analysis highlights the utility of proteogenomics in the study of secreted effectors.


Proteins | 2017

Identification of a Dimeric KDG Aldolase from Agrobacterium tumefaciens

Tatiana P. Soares da Costa; Madhvi Patel; Sebastien Desbois; Ruchi Gupta; Pierre Faou; Matthew A. Perugini

Agrobacterium tumefaciens is a Gram‐negative bacterium and causative agent of Crown Gall disease that infects a variety of economically important plants. The annotated A. tumefaciens genome contains 10 putative dapA genes, which code for dihydrodipicolinate synthase (DHDPS). However, we have recently demonstrated that only one of these genes (dapA7) encodes a functional DHDPS. The function of the other nine putative dapA genes is yet to be determined. Here, we demonstrate using bioinformatics that the product of the dapA5 gene (DapA5) possesses all the catalytic residues canonical to 2‐keto‐3‐deoxygluconate (KDG) aldolase, which is a class I aldolase involved in glucose metabolism. We therefore expressed, purified, and characterized recombinant DapA5 using mass spectrometry, circular dichroism spectroscopy, analytical ultracentrifugation, and enzyme kinetics. The results show that DapA5 (1) adopts an α/β structure consistent with the TIM‐barrel fold of KDG aldolases, (2) possesses KDG aldolase enzyme activity, and (3) exists as a tight dimer in solution. This study shows for the first time that dapA5 from A. tumefaciens encodes a functional dimeric KDG aldolase.


Protein Expression and Purification | 2018

Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae

Ruchi Gupta; Tatiana P. Soares da Costa; Pierre Faou; Con Dogovski; Matthew A. Perugini

Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.

Collaboration


Dive into the Pierre Faou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey A. Donnan

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge