Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Germon is active.

Publication


Featured researches published by Pierre Germon.


Journal of Clinical Microbiology | 2007

Extraintestinal Pathogenic Escherichia coli Strains of Avian and Human Origin: Link between Phylogenetic Relationships and Common Virulence Patterns

Maryvonne Moulin-Schouleur; Maryline Répérant; Sylvie Laurent; Annie Brée; Sandrine Mignon-Grasteau; Pierre Germon; Denis Rasschaert; Catherine Schouler

ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) strains of human and avian origin show similarities that suggest that the avian strains potentially have zoonotic properties. However, the phylogenetic relationships between avian and human ExPEC strains are poorly documented, so this possibility is difficult to assess. We used PCR-based phylotyping and multilocus sequence typing (MLST) to determine the phylogenetic relationships between 39 avian pathogenic E. coli (APEC) strains of serogroups O1, O2, O18, and O78 and 51 human ExPEC strains. We also compared the virulence genotype and pathogenicity for chickens of APEC strains and human ExPEC strains. Twenty-eight of the 30 APEC strains of serogroups O1, O2, and O18 were classified by MLST into the same subcluster (B2-1) of phylogenetic group B2, whereas the 9 APEC strains of serogroup O78 were in phylogenetic groups D (3 strains) and B1 (6 strains). Human ExPEC strains were closely related to APEC strains in each of these three subclusters. The 28 avian and 25 human strains belonging to phylogenetic subcluster B2-1 all expressed the K1 antigen and presented no significant differences concerning the presence of other virulence factors. Moreover, human strains of this phylogenetic subcluster were highly virulent for chicks, so no host specificity was identified. Thus, APEC strains of serotypes O1:K1, O2:K1, and O18:K1 belong to the same highly pathogenic clonal group as human E. coli strains of the same serotypes isolated from cases of neonatal meningitis, urinary tract infections, and septicemia. These APEC strains constitute a potential zoonotic risk.


Journal of Clinical Microbiology | 2006

Common Virulence Factors and Genetic Relationships between O18:K1:H7 Escherichia coli Isolates of Human and Avian Origin

Maryvonne Moulin-Schouleur; Catherine Schouler; Patrick Tailliez; Mu-Rong Kao; Annie Brée; Pierre Germon; Eric Oswald; Jacques Mainil; Miguel Blanco; Jorge Blanco

ABSTRACT Extraintestinal pathogenic (ExPEC) Escherichia coli strains of serotype O18:K1:H7 are mainly responsible for neonatal meningitis and sepsis in humans and belong to a limited number of closely related clones. The same serotype is also frequently isolated from the extraintestinal lesions of colibacillosis in poultry, but it is not well known to what extent human and avian strains of this particular serotype are related. Twenty-two ExPEC isolates of human origin and 33 isolates of avian origin were compared on the basis of their virulence determinants, lethality for chicks, pulsed-field gel electrophoresis (PFGE) patterns, and classification in the main phylogenetic groups. Both avian and human isolates were lethal for chicks and harbored similar virulence genotypes. A major virulence pattern, identified in 75% of the isolates, was characterized by the presence of F1 variant fimbriae; S fimbriae; IbeA; the aerobactin system; and genomic fragments A9, A12, D1, D7, D10, and D11 and by the absence of P fimbriae, F1C fimbriae, Afa adhesin, and CNF1. All but one of the avian and human isolates also belonged to major phylogenetic group B2. However, various subclonal populations could be distinguished by PFGE in relation to animal species and geographical origin. These results demonstrate that very closely related clones can be recovered from extraintestinal infections in humans and chickens and suggest that avian pathogenic E. coli isolates of serotype O18:K1:H7 are potential human pathogens.


Journal of Bacteriology | 2006

A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence.

Iman Chouikha; Pierre Germon; Annie Brée; Philippe Gilot; Maryvonne Moulin-Schouleur; Catherine Schouler

The complete nucleotide sequence and genetic organization of a new genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is reported. This 49,600-bp island is inserted at the selC locus and contains putative mobile genetic elements such as a phage-related integrase gene, transposase genes, and direct repeats. AGI-3 shows a mosaic structure of five modules. Some of these modules are present in other E. coli strains and in other pathogenic bacterial species. The gene cluster aec-35 to aec-37 of module 1 encodes proteins associated with carbohydrates assimilation such as a major facilitator superfamily transporter (Aec-36), a glycosidase (Aec-37), and a putative transcriptional regulator of the LacI family (Aec-35). The aec-35 to aec-37 cluster was found in 11.6% of the tested pathogenic and nonpathogenic E. coli strains. When present, the aec-35 to aec-37 cluster is strongly associated with the selC locus (97%). Deletion of the aec-35-aec-37 region affects the assimilation of seven carbohydrates, decreases the growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 for chickens.


Veterinary Research | 2012

Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells

Adeline Porcherie; Patricia Cunha; Angélina Trotereau; Perrine Roussel; Florence B. Gilbert; Pascal Rainard; Pierre Germon

Escherichia coli is a frequent cause of clinical mastitis in dairy cows. It has been shown that a prompt response of the mammary gland after E. coli entry into the lumen of the gland is required to control the infection, which means that the early detection of bacteria is of prime importance. Yet, apart from lipopolysaccharide (LPS), little is known of the bacterial components which are detected by the mammary innate immune system. We investigated the repertoire of potential bacterial agonists sensed by the udder and bovine mammary epithelial cells (bMEC) during E. coli mastitis by using purified or synthetic molecular surrogates of bacterial agonists of identified pattern-recognition receptors (PRRs). The production of CXCL8 and the influx of leucocytes in milk were the readouts of reactivity of stimulated cultured bMEC and challenged udders, respectively. Quantitative PCR revealed that bMEC in culture expressed the nucleotide oligomerization domain receptors NOD1 and NOD2, along with the Toll-like receptors TLR1, TLR2, TLR4, and TLR6, but hardly TLR5. In line with expression data, bMEC proved to react to the cognate agonists C12-iE-DAP (NOD1), Pam3CSK4 (TLR1/2), Pam2CSK4 (TLR2/6), pure LPS (TLR4), but not to flagellin (TLR5). As the udder reactivity to NOD1 and TLR5 agonists has never been reported, we tested whether the mammary gland reacted to intramammary infusion of C12-iE-DAP or flagellin. The udder reacted to C12-iE-DAP, but not to flagellin, in line with the reactivity of bMEC. These results extend our knowledge of the reactivity of the bovine mammary gland to bacterial agonists of the innate immune system, and suggest that E. coli can be recognized by several PRRs including NOD1, but unexpectedly not by TLR5. The way the mammary gland senses E. coli is likely to shape the innate immune response and finally the outcome of E. coli mastitis.


Infection and Immunity | 2001

Generation and Surface Localization of Intact M Protein in Streptococcus pyogenes Are Dependent on sagA

Indranil Biswas; Pierre Germon; Kathleen McDade; June R. Scott

ABSTRACT The M protein is an important surface-located virulence factor of Streptococcuspyogenes, the group A streptococcus (GAS). Expression of M protein is primarily controlled by Mga, a transcriptional activator protein. A recent report suggested that the sag locus, which includes nine genes necessary and sufficient for production of streptolysin S, another GAS virulence factor, is also needed for transcription of emm, encoding the M protein (Z. Li, D. D. Sledjeski, B. Kreikemeyer, A. Podbielski, and M. D. Boyle, J. Bacteriol. 181:6019–6027, 1999). To investigate this in more detail, we constructed an insertion-deletion mutation insagA, the first gene in the sag locus, in the M6 strain JRS4. The resulting strain, JRS470, produced no detectable streptolysin S and showed a drastic reduction in cell surface-associated M protein, as measured by cell aggregation and Western blot analysis. However, transcription of the emmgene was unaffected by the sagA mutation. Detailed analysis with monoclonal antibodies and an antipeptide antibody showed that the M protein in the sagA mutant strain was truncated so that it lacks the C-repeat region and the C-terminal domain required for anchoring it to the cell surface. This truncated M protein was largely found, as expected, in the culture supernatant. Lack of surface-located M protein made the sagA mutant strain susceptible to phagocytosis. Thus, although sagA does not affect transcription of the M6 protein gene, it is needed for the surface localization of this important virulence factor.


Microbial Pathogenesis | 2010

Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli — Search for factors involved in host specificity or zoonotic potential

Philippe Bauchart; Pierre Germon; Annie Brée; Eric Oswald; Jörg Hacker; Ulrich Dobrindt

Avian pathogenic Escherichia coli (APEC) and human extraintestinal pathogenic E. coli (ExPEC) cause various diseases in humans and animals and cannot be clearly distinguished by molecular epidemiology and genome content. We characterized traits of eight representative human ExPEC and APEC variants to either support the zoonotic potential or indicate factors involved in host specificity. These strains were very similar regarding phylogeny, virulence gene content and allelic variation of adhesins. Host- or serogroup-specific differences in type 1-, P-, S/F1C-fimbriae, curli, flagella, colicin and aerobactin expression or in vivo virulence were not found. Serogroup-dependent differences in genome content may depend on the phylogenetic background. To identify traits involved in host specificity, we performed transcriptome analysis of human ExPEC IHE3034 and APEC BEN374 in response to human (37 degrees C) or avian (41 degrees C) body temperature. Both isolates displayed similar transcriptional profiles at both temperatures. Transcript levels of motility/chemotaxis genes were repressed at 41 degrees C. The hdeAB and cadA genes involved in acid stress resistance, although often induced at 41 degrees C, could not be correlated with host specificity. Beside strain-specific effects, the common behavior of both strains at human or avian body temperature supports the idea of a potential zoonotic risk of certain human ExPEC and APEC variants.


Infection and Immunity | 2008

Inactivation of ibeA and ibeT Results in Decreased Expression of Type 1 Fimbriae in Extraintestinal Pathogenic Escherichia coli Strain BEN2908

Mélanie A. M. Cortes; Julien Gibon; Nathalie K. Chanteloup; Maryvonne Moulin-Schouleur; Philippe Gilot; Pierre Germon

ABSTRACT IbeA in extraintestinal pathogenic Escherichia coli (ExPEC) strains was previously described for its role in invasion. Here we investigated the role of IbeA and IbeT, encoded by a gene located downstream of ibeA, in the adhesion of the avian ExPEC strain BEN2908 to human brain microvascular endothelial cells (HBMEC). The ΔibeA mutant was less adhesive to HBMEC than the wild-type strain BEN2908 was. Because strain BEN2908 also expresses type 1 fimbriae, we measured the adhesion specifically due to IbeA by comparing the adhesive properties of a Δfim derivative of strain BEN2908 to those of a double Δfim ΔibeA mutant. No differences were observed, indicating that the reduction of adhesion in BEN2908 ΔibeA could be due to a decrease in type 1 fimbria expression. We indeed showed that the decreased adhesion of BEN2908 ΔibeA was correlated with a decrease in type 1 fimbria expression. Accordingly, more bacteria had a fim promoter orientated in the off position in a culture of BEN2908 ΔibeA than in a culture of BEN2908. Expression of fimB and fimE, two genes encoding recombinases participating in controlling the orientation of the fim promoter, was decreased in BEN2908 ΔibeA. A reduction of type 1 fimbria expression due to a preferential orientation of the fim promoter in the off position was also seen in an ibeT mutant of strain BEN2908. We finally suggest a role for IbeA and IbeT in modulating the expression of type 1 fimbriae through an as yet unknown mechanism.


PLOS ONE | 2015

Lactic Acid Bacteria Isolated from Bovine Mammary Microbiota: Potential Allies against Bovine Mastitis.

Damien Bouchard; Bianca Seridan; Taous Saraoui; Lucie Rault; Pierre Germon; Candelaria Gonzalez-Moreno; Fatima Nader-Macias; Damien Baud; Patrice Francois; Victoria Chuat; Florian Chain; Philippe Langella; Jacques Robert Nicoli; Yves Le Loir; Sergine Even

Bovine mastitis is a costly disease in dairy cattle worldwide. As of yet, the control of bovine mastitis is mostly based on prevention by thorough hygienic procedures during milking. Additional strategies include vaccination and utilization of antibiotics. Despite these measures, mastitis is not fully under control, thus prompting the need for alternative strategies. The goal of this study was to isolate autochthonous lactic acid bacteria (LAB) from bovine mammary microbiota that exhibit beneficial properties that could be used for mastitis prevention and/or treatment. Sampling of the teat canal led to the isolation of 165 isolates, among which a selection of ten non-redundant LAB strains belonging to the genera Lactobacillus and Lactococcus were further characterized with regard to several properties: surface properties (hydrophobicity, autoaggregation); inhibition potential of three main mastitis pathogens, Staphylococcus aureus, Escherichia coli and Streptococcus uberis; colonization capacities of bovine mammary epithelial cells (bMEC); and immunomodulation properties. Three strains, Lactobacillus brevis 1595 and 1597 and Lactobacillus plantarum 1610, showed high colonization capacities and a medium surface hydrophobicity. These strains are good candidates to compete with pathogens for mammary gland colonization. Moreover, nine strains exhibited anti-inflammatory properties, as illustrated by the lower IL-8 secretion by E. coli-stimulated bMEC in the presence of these LAB. Full genome sequencing of five candidate strains allowed to check for undesirable genetic elements such as antibiotic resistance genes and to identify potential bacterial determinants involved in the beneficial properties. This large screening of beneficial properties while checking for undesirable genetic markers allowed the selection of promising candidate LAB strains from bovine mammary microbiota for the prevention and/or treatment of bovine mastitis.


PLOS ONE | 2016

Genomic Comparative Study of Bovine Mastitis Escherichia coli.

Florent Kempf; Cindy Slugocki; Shlomo E. Blum; Gabriel Leitner; Pierre Germon

Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.


Microbes and Infection | 2008

Differential expression of iutA and ibeA in the early stages of infection by extra-intestinal pathogenic E. coli

Iman Chouikha; Annie Brée; Maryvonne Moulin-Schouleur; Philippe Gilot; Pierre Germon

Extraintestinal pathogenic Escherichia coli strains are responsible for a number of infections in humans and animals. Several ExPEC virulence genes have already been described such as iutA involved in iron acquisition and ibeA required for invasion of eukaryotic cells. In this study we used the chicken model to study the expression of iutA and ibeA by two ExPEC strains during growth of bacteria in LB medium and during the infection. Expression of iutA and ibeA were shown to be higher in stationary phase than in exponential phase in vitro. During infection, iutA expression was increased at least 50-fold in the airsac and in the lung 3, 6 and 24h. p.i. compared to in vitro grown bacteria. Expression of ibeA was increased 2.5-9-fold in the airsac in the early stages of the infection only. This is the first report analyzing quantitatively the expression of ExPEC virulence genes during the course of the infection. The model described could be useful to study the expression of other ExPEC virulence genes.

Collaboration


Dive into the Pierre Germon's collaboration.

Top Co-Authors

Avatar

Pascal Rainard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Maryvonne Moulin-Schouleur

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Annie Brée

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Schouler

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence B. Gilbert

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Yves Le Loir

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Gitton

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Maryline Répérant

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Maryline Répérant-Ferter

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge