Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Leblanc is active.

Publication


Featured researches published by Pierre Leblanc.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy.

Yuhui Huang; Jianping Yuan; Elda Righi; Walid S. Kamoun; Marek Ancukiewicz; Jean Nezivar; Michael Santosuosso; John D. Martin; Margaret R. Martin; Fabrizio Vianello; Pierre Leblanc; Peigen Huang; Dan G. Duda; Dai Fukumura; Rakesh K. Jain; Mark C. Poznansky

The recent approval of a prostate cancer vaccine has renewed hope for anticancer immunotherapies. However, the immunosuppressive tumor microenvironment may limit the effectiveness of current immunotherapies. Antiangiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy, but they often are used at high doses in the clinic to prune tumor vessels and paradoxically may compromise various therapies. Here, we demonstrate that targeting tumor vasculature with lower vascular-normalizing doses, but not high antivascular/antiangiogenic doses, of an anti-VEGF receptor 2 (VEGFR2) antibody results in a more homogeneous distribution of functional tumor vessels. Furthermore, lower doses are superior to the high doses in polarizing tumor-associated macrophages from an immune inhibitory M2-like phenotype toward an immune stimulatory M1-like phenotype and in facilitating CD4+ and CD8+ T-cell tumor infiltration. Based on this mechanism, scheduling lower-dose anti-VEGFR2 therapy with T-cell activation induced by a whole cancer cell vaccine therapy enhanced anticancer efficacy in a CD8+ T-cell–dependent manner in both immune-tolerant and immunogenic murine breast cancer models. These findings indicate that vascular-normalizing lower doses of anti-VEGFR2 antibody can reprogram the tumor microenvironment away from immunosuppression toward potentiation of cancer vaccine therapies. Given that the combinations of high doses of bevacizumab with chemotherapy have not improved overall survival of breast cancer patients, our study suggests a strategy to use antiangiogenic agents in breast cancer more effectively with active immunotherapy and potentially other anticancer therapies.


Cancer Research | 2011

CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer.

Elda Righi; Satoshi Kashiwagi; Jianping Yuan; Michael Santosuosso; Pierre Leblanc; Rachel Ingraham; Benjamin Forbes; Beth Edelblute; Brian Collette; Deyin Xing; Magdalena Kowalski; Maria Cristina Mingari; Fabrizio Vianello; Michael J. Birrer; Sandra Orsulic; Glenn Dranoff; Mark C. Poznansky

The chemokine CXCL12 and its receptor CXCR4 are expressed widely in human cancers, including ovarian cancer, in which they are associated with disease progression at the levels of tumor cell proliferation, invasion, and angiogenesis. Here, we used an immunocompetent mouse model of intraperitoneal papillary epithelial ovarian cancer to show that modulation of the CXCL12/CXCR4 axis in ovarian cancer has multimodal effects on tumor pathogenesis associated with induction of antitumor immunity. siRNA-mediated knockdown of CXCL12 in BR5-1 cells that constitutively express CXCL12 and CXCR4 reduced cell proliferation in vitro, and tumor growth in vivo. Similarly, treatment of BR5-1-derived tumors with AMD3100, a selective CXCR4 antagonist, resulted in increased tumor apoptosis and necrosis, reduction in intraperitoneal dissemination, and selective reduction of intratumoral FoxP3(+) regulatory T cells (Treg). Compared with controls, CXCR4 blockade greatly increased T-cell-mediated antitumor immune responses, conferring a significant survival advantage to AMD3100-treated mice. In addition, the selective effect of CXCR4 antagonism on intratumoral Tregs was associated with both higher CXCR4 expression and increased chemotactic responses to CXCL12, a finding that was also confirmed in a melanoma model. Together, our findings reinforce the concept of a critical role for the CXCL12/CXCR4 axis in ovarian cancer pathogenesis, and they offer a definitive preclinical validation of CXCR4 as a therapeutic target in this disease.


The Journal of Infectious Diseases | 2009

HIV-1 envelope protein gp120 is present at high concentrations in secondary lymphoid organs of individuals with chronic HIV-1 infection.

Michael Santosuosso; Elda Righi; Victoria Lindstrom; Pierre Leblanc; Mark C. Poznansky

The envelope protein of human immunodeficiency virus type 1 (HIV-1)--glycoprotein 120 (gp120)--has been demonstrated to dysregulate T cell function in vitro. We obtained autopsy tissues from individuals with chronic HIV-1 infection to determine whether there was enough gp120 in lymphoid tissues and/or blood to elicit these effects. We found that gp120 was present in high concentrations (>300 pg/mL) in the spleen and lymph nodes of some of these individuals. In contrast, very low amounts of gp120 and p24 were detected in all serum samples tested. These findings underpin the clinical relevance of nonentry functions of gp120 and the chronic nature of human immunodeficiency virus (HIV)-induced immune dysregulation.


PLOS ONE | 2013

Near-infrared laser adjuvant for influenza vaccine.

Satoshi Kashiwagi; Jianping Yuan; Benjamin Forbes; Mathew L. Hibert; Eugene L. Q. Lee; Laura Whicher; Calum Goudie; Yuan Yang; Tao Chen; Beth Edelblute; Brian Collette; Laurel Edington; James Trussler; Jean Nezivar; Pierre Leblanc; Roderick T. Bronson; Kosuke Tsukada; Makoto Suematsu; Jeffrey S. Dover; Timothy Brauns; Jeffrey A. Gelfand; Mark C. Poznansky

Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants.


Journal of Hematology & Oncology | 2014

A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma

Jianping Yuan; Satoshi Kashiwagi; Patrick Reeves; Jean Nezivar; Yuan Yang; Nadiah Hashim Arrifin; Mai Nguyen; Gilberte Jean-Mary; Xiaoyun Tong; Paramjit Uppal; Svetlana Korochkina; Ben Forbes; Tao Chen; Elda Righi; Roderick T. Bronson; Huabiao Chen; Sandra Orsulic; Timothy Brauns; Pierre Leblanc; Nathalie Scholler; Glenn Dranoff; Jeffrey A. Gelfand; Mark C. Poznansky

BackgroundAlthough dendritic cell (DC) vaccines are considered to be promising treatments for advanced cancer, their production and administration is costly and labor-intensive. We developed a novel immunotherapeutic agent that links a single-chain antibody variable fragment (scFv) targeting mesothelin (MSLN), which is overexpressed on ovarian cancer and mesothelioma cells, to Mycobacterium tuberculosis (MTB) heat shock protein 70 (Hsp70), which is a potent immune activator that stimulates monocytes and DCs, enhances DC aggregation and maturation and improves cross-priming of T cells mediated by DCs.MethodsBinding of this fusion protein with MSLN on the surface of tumor cells was measured by flow cytometry and fluorescence microscopy. The therapeutic efficacy of this fusion protein was evaluated in syngeneic and orthotopic mouse models of papillary ovarian cancer and malignant mesothelioma. Mice received 4 intraperitoneal (i.p.) treatments with experimental or control proteins post i.p. injection of tumor cells. Ascites-free and overall survival time was measured. For the investigation of anti-tumor T-cell responses, a time-matched study was performed. Splenocytes were stimulated with peptides, and IFNγ- or Granzyme B- generating CD3+CD8+ T cells were detected by flow cytometry. To examine the role of CD8+ T cells in the antitumor effect, we performed in vivo CD8+ cell depletion. We further determined if the fusion protein increases DC maturation and improves antigen presentation as well as cross-presentation by DCs.ResultsWe demonstrated in vitro that the scFvMTBHsp70 fusion protein bound to the tumor cells used in this study through the interaction of scFv with MSLN on the surface of these cells, and induced maturation of bone marrow-derived DCs. Use of this bifunctional fusion protein in both mouse models significantly enhanced survival and slowed tumor growth while augmenting tumor-specific CD8+ T-cell dependent immune responses. We also demonstrated in vitro and in vivo that the fusion protein enhanced antigen presentation and cross-presentation by targeting tumor antigens towards DCs.ConclusionsThis new cancer immunotherapy has the potential to be cost-effective and broadly applicable to tumors that overexpress mesothelin.


Expert Opinion on Biological Therapy | 2010

Gene transfer in the nervous system and implications for transsynaptic neuronal tracing

Youngbuhm Huh; Myung Sook Oh; Pierre Leblanc; Kwang-Soo Kim

Importance of the field: Neuronal circuitries are determined by specific synaptic connections and they provide the cellular basis of cognitive processes and behavioral functions. To investigate neuronal circuitries, tracers are typically used to identify the original neurons and their projection targets. Areas covered in this review: Traditional tracing methods using chemical tracers have major limitations such as non-specificity. In this review, we highlight novel genetic tracing approaches that enable visualization of specific neuronal pathways by introducing cDNA encoding a transsynaptic tracer. In contrast to conventional tracing methods, these genetic approaches use cell-type-specific promoters to express transsynaptic tracers such as wheat germ agglutinin and C-terminal fragment of tetanus toxin, which allows labeling of either the input or output populations and connections of specific neuronal type. What the reader will gain: Specific neuronal circuit information by these genetic approaches will allow more precise, comprehensive and novel information about individual neural circuits and their function in normal and diseased brains. Take home message: Using tracer gene transfer, neuronal circuit plasticity after traumatic injury or neurodegenerative diseases can be visualized. Also, this can provide a good marker for evaluation of therapeutic effects of neuroprotective or neurotrophic agents.


Journal of Biological Chemistry | 2011

Norepinephrine Deficiency Is Caused by Combined Abnormal mRNA Processing and Defective Protein Trafficking of Dopamine β-Hydroxylase

Chun-Hyung Kim; Amanda Leung; Yang Hoon Huh; Eungi Yang; Deog-Joong Kim; Pierre Leblanc; Hoon Ryu; Kyungjin Kim; Dong-Wook Kim; Emily M. Garland; Satish R. Raj; Italo Biaggioni; David Robertson; Kwang-Soo Kim

Human norepinephrine (NE) deficiency (or dopamine β-hydroxylase (DBH) deficiency) is a rare congenital disorder of primary autonomic failure, in which neurotransmitters NE and epinephrine are undetectable. Although potential pathogenic mutations, such as a common splice donor site mutation (IVS1+2T→C) and various missense mutations, in NE deficiency patients were identified, molecular mechanisms underlying this disease remain unknown. Here, we show that the IVS1+2T→C mutation results in a non-detectable level of DBH protein production and that all three missense mutations tested lead to the DBH protein being trapped in the endoplasmic reticulum (ER). Supporting the view that mutant DBH induces an ER stress response, exogenous expression of mutant DBH dramatically induced expression of BiP, a master ER chaperone. Furthermore, we found that a pharmacological chaperone, glycerol, significantly rescued defective trafficking of mutant DBH proteins. Taken together, we propose that NE deficiency is caused by the combined abnormal processing of DBH mRNA and defective protein trafficking and that this disease could be treated by a pharmacological chaperone(s).


Journal of Neurochemistry | 2015

Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer's disease.

Minho Moon; Inhye Jeong; Chun-Hyung Kim; Jihong Kim; Paula K.J. Lee; Inhee Mook-Jung; Pierre Leblanc; Kwang-Soo Kim

The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in other brain areas. Recent studies suggest that up‐regulation of Nurr1 expression is critical for cognitive functions and/or long‐term memory in forebrain areas including hippocampal formation. Questions remain about the association between Nurr1 expression and Alzheimers disease (AD) brain pathology. Here, using our newly developed Nurr1‐selective antibody, we report that Nurr1 protein is prominently expressed in brain areas with Aβ accumulation, that is, the subiculum and the frontal cortex, in the 5XFAD mouse and that Nurr1 is highly co‐expressed with Aβ at early stages. Furthermore, the number of Nurr1‐expressing cells significantly declines in the 5XFAD mouse in an age‐dependent manner, accompanied by increased plaque deposition. Thus, our findings suggest that altered expression of Nurr1 is associated with AD progression.


Human Vaccines & Immunotherapeutics | 2014

VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever

Pierre Leblanc; Leonard Moise; Cybelle Luza; Kanawat Chantaralawan; Lynchy Lezeau; Jianping Yuan; Mary Field; Daniel Richer; Christine M. Boyle; William D. Martin; Jordan B. Fishman; Eric Berg; David Baker; Brandon Zeigler; Dale Mais; William R. Taylor; Russell Coleman; H. Shaw Warren; Jeffrey A. Gelfand; Anne S. De Groot; Timothy Brauns; Mark C. Poznansky

Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.


PLOS ONE | 2011

R5-SHIV Induces Multiple Defects in T Cell Function during Early Infection of Rhesus Macaques Including Accumulation of T Reg Cells in Lymph Nodes

Michael Santosuosso; Elda Righi; E. David Hill; Pierre Leblanc; Brett Kodish; Hari N. Mylvaganam; Nagadenahalli B. Siddappa; Liljana Stevceva; Shiu-Lok Hu; Musie Ghebremichael; Agnès Laurence Chenine; Avi-Hai Hovav; Ruth M. Ruprecht; Mark C. Poznansky

Background HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues. Methods Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation. Results/Conclusions We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.

Collaboration


Dive into the Pierre Leblanc's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge