Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Marie Allard is active.

Publication


Featured researches published by Pierre-Marie Allard.


Analytical Chemistry | 2016

Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication

Pierre-Marie Allard; Tiphaine Péresse; Jonathan Bisson; Katia Gindro; Laurence Marcourt; Van Cuong Pham; Fanny Roussi; Marc Litaudon; Jean-Luc Wolfender

Dereplication represents a key step for rapidly identifying known secondary metabolites in complex biological matrices. In this context, liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is increasingly used and, via untargeted data-dependent MS/MS experiments, massive amounts of detailed information on the chemical composition of crude extracts can be generated. An efficient exploitation of such data sets requires automated data treatment and access to dedicated fragmentation databases. Various novel bioinformatics approaches such as molecular networking (MN) and in-silico fragmentation tools have emerged recently and provide new perspective for early metabolite identification in natural products (NPs) research. Here we propose an innovative dereplication strategy based on the combination of MN with an extensive in-silico MS/MS fragmentation database of NPs. Using two case studies, we demonstrate that this combined approach offers a powerful tool to navigate through the chemistry of complex NPs extracts, dereplicate metabolites, and annotate analogues of database entries.


Phytochemistry | 2012

Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri

Pierre-Marie Allard; Pieter Leyssen; Marie-Thérèse Martin; Mélanie Bourjot; Vincent Dumontet; Cécilia Eydoux; Jean-Claude Guillemot; Bruno Canard; Cyril Poullain; Françoise Guéritte; Marc Litaudon

The chemical study of the bark and the wood of Trigonostemon cherrieri, a rare endemic plant of New Caledonia, led to the isolation of a series of highly oxygenated daphnane diterpenoid orthoesters (DDO) bearing an uncommon chlorinated moiety: trigocherrins A-F and trigocherriolides A-D. Herein, we describe the isolation and structure elucidation of the DDO (trigocherrins B-F and trigocherriolides A-D). We also report the antiviral activity of trigocherrins A, B and F (1, 2 and 6) and trigocherriolides A, B and C (7-9) against various emerging pathogens: chikungunya virus (CHIKV), Sindbis virus (SINV), Semliki forest virus (SFV) and dengue virus (DENV).


Organic Letters | 2012

Trigocherrin A, the first natural chlorinated daphnane diterpene orthoester from Trigonostemon cherrieri.

Pierre-Marie Allard; Marie-Thérèse Martin; Marie-Elise Tran Huu Dau; Pieter Leyssen; Françoise Guéritte; Marc Litaudon

Trigocherrin A, a chlorinated and highly oxygenated daphnane diterpenoid orthoester (DDO), was isolated from the bark of Trigonostemon cherrieri. Trigocherrin A is the first example of a naturally occurring halogenated DDO. Its structure was elucidated by comprehensive analysis of NMR spectroscopic data, and its absolute configuration was determined by comparison of experimental and theoretically calculated ECD spectra. Trigocherrin A exhibited a potent and selective effect against Chikungunya virus in Vero cells.


Journal of Natural Products | 2011

Alkylated Flavanones from the Bark of Cryptocarya chartacea As Dengue Virus NS5 Polymerase Inhibitors

Pierre-Marie Allard; Elise Tran Huu Dau; Cécilia Eydoux; Jean-Claude Guillemot; Vincent Dumontet; Cyril Poullain; Bruno Canard; Françoise Guéritte; Marc Litaudon

An in vitro screening of New Caledonian plants allowed the selection of several species with a significant dengue virus NS5 RNA-dependent RNA polymerase (RdRp) inhibiting activity. The chemical investigation of Cryptocarya chartacea led to the isolation of a series of new mono- and dialkylated flavanones named chartaceones A-F (1-6), along with pinocembrin. They were isolated as racemic mixtures and characterized using extensive one- and two-dimensional NMR spectroscopy. Four diastereomers of chartaceone A (1) were separated using chiral HPLC, and their absolute configurations were established by comparison of their experimental and calculated ECD spectra. The dialkylated flavanones, chartaceones C-F (3-6), exhibited the most significant NS5 RdRp inhibiting activity, with IC(50) ranging from 1.8 to 4.2 μM. Chartaceones represent a new class of non-nucleosidic inhibitors of the DENV NS5 RdRp.


Current Opinion in Chemical Biology | 2017

Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification.

Pierre-Marie Allard; Grégory Genta-Jouve; Jean-Luc Wolfender

Natural products (NPs) research is changing and rapidly adopting cutting-edge tools, which radically transform the way to characterize extracts and small molecules. With the innovations in metabolomics, early integration of deep metabolome annotation information allows to efficiently guide the isolation of valuable NPs only and, in parallel, to generate massive metadata sets for the study of given extracts under various perspectives. This is the case for chemotaxonomy studies where common biosynthetic traits among species can be evidenced, but also for drug discovery purpose where such traits, in combination with bioactivity studies on extracts, may evidence bioactive molecules even before their isolation. One of the major bottlenecks of such studies remains the level of accuracy at which NPs can be identified. We discuss here the advancements in LC-MS and associated mining methods by addressing what would be ideal and what is achieved today. We propose future developments for reinforcing generic NPs databases both in the spectral and structural dimensions by heading towards a virtuous metabolite identification cycle allowing annotation of both known and unreported metabolites in an iterative manner. Such approaches could significantly accelerate and improve our knowledge of the huge chemodiversity found in nature.


Journal of Natural Products | 2015

Anti-Candida Cassane-Type Diterpenoids from the Root Bark of Swartzia simplex

Q Favre-Godal; Stéphane Dorsaz; Emerson Ferreira Queiroz; Laurence Marcourt; Samad Nejad Ebrahimi; Pierre-Marie Allard; Francine Voinesco; Matthias Hamburger; Mahabir P. Gupta; Katia Gindro; Dominique Sanglard; Jean-Luc Wolfender

A dichloromethane extract of the roots from the Panamanian plant Swartzia simplex exhibited a strong antifungal activity in a bioautography assay against a genetically modified hypersusceptible strain of Candida albicans. At-line HPLC activity based profiling of the crude extract enabled a precise localization of the antifungal compounds, and dereplication by UHPLC-HRESIMS indicated the presence of potentially new metabolites. Transposition of the HPLC reversed-phase analytical conditions to medium-pressure liquid chromatography (MPLC) allowed an efficient isolation of the major constituents. Minor compounds of interest were isolated from the MPLC fractions using semipreparative HPLC. Using this strategy, 14 diterpenes (1-14) were isolated, with seven (5-10, 14) being new antifungal natural products. The new structures were elucidated using NMR spectroscopy and HRESIMS analysis. The absolute configurations of some of the compounds were elucidated by electronic circular dichroism spectroscopy. The antifungal properties of these compounds were evaluated as their minimum inhibitory concentrations in a dilution assay against both hypersusceptible and wild-type strains of C. albicans and by assessment of their antibiofilm activities. The potential cytological effects on the ultrastructure of C. albicans of the antifungal compounds isolated were evaluated on thin sections by transmission electron microscopy.


ACS Chemical Biology | 2017

Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks

Florent Olivon; Pierre-Marie Allard; Alexey Koval; Davide Righi; Grégory Genta-Jouve; Johan Neyts; Cécile Apel; Christophe Pannecouque; Louis-Félix Nothias; Xavier Cachet; Laurence Marcourt; Fanny Roussi; Vladimir L. Katanaev; David Touboul; Jean-Luc Wolfender; Marc Litaudon

Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.


PLOS ONE | 2017

Peptidomic and transcriptomic profiling of four distinct spider venoms

Vera Oldrati; Dominique Koua; Pierre-Marie Allard; Nicolas Hulo; Miriam Arrell; Wolfgang Nentwig; Frédérique Lisacek; Jean-Luc Wolfender; Lucia Kuhn-Nentwig; Reto Stöcklin

Venom based research is exploited to find novel candidates for the development of innovative pharmacological tools, drug candidates and new ingredients for cosmetic and agrochemical industries. Moreover, venomics, as a well-established approach in systems biology, helps to elucidate the genetic mechanisms of the production of such a great molecular biodiversity. Today the advances made in the proteomics, transcriptomics and bioinformatics fields, favor venomics, allowing the in depth study of complex matrices and the elucidation even of minor compounds present in minute biological samples. The present study illustrates a rapid and efficient method developed for the elucidation of venom composition based on NextGen mRNA sequencing of venom glands and LC-MS/MS venom proteome profiling. The analysis of the comprehensive data obtained was focused on cysteine rich peptide toxins from four spider species originating from phylogenetically distant families for comparison purposes. The studied species were Heteropoda davidbowie (Sparassidae), Poecilotheria formosa (Theraphosidae), Viridasius fasciatus (Viridasiidae) and Latrodectus mactans (Theridiidae). This led to a high resolution profiling of 284 characterized cysteine rich peptides, 111 of which belong to the Inhibitor Cysteine Knot (ICK) structural motif. The analysis of H. davidbowie venom revealed a high richness in term of venom diversity: 95 peptide sequences were identified; out of these, 32 peptides presented the ICK structural motif and could be classified in six distinct families. The profiling of P. formosa venom highlighted the presence of 126 peptide sequences, with 52 ICK toxins belonging to three structural distinct families. V. fasciatus venom was shown to contain 49 peptide sequences, out of which 22 presented the ICK structural motif and were attributed to five families. The venom of L. mactans, until now studied for its large neurotoxins (Latrotoxins), revealed the presence of 14 cysteine rich peptides, out of which five were ICK toxins belonging to the CSTX superfamily. This in depth profiling of distinct ICK peptide families identified across the four spider species highlighted the high conservation of these neurotoxins among spider families.


Journal of Natural Products | 2016

Targeted Isolation of Indolopyridoquinazoline Alkaloids from Conchocarpus fontanesianus Based on Molecular Networks

Rodrigo Sant’Ana Cabral; Pierre-Marie Allard; Laurence Marcourt; Maria Cláudia Marx Young; Emerson Ferreira Queiroz; Jean-Luc Wolfender

A dichloromethane-soluble fraction of the stem bark of Conchocarpus fontanesianus showed antifungal activity against Candida albicans in a bioautography assay. Off-line high-pressure liquid chromatography activity-based profiling of this extract enabled a precise localization of the compounds responsible for the antifungal activity that were isolated and identified as the known compounds flindersine (17) and 8-methoxyflindersine (18). As well as the identification of the bioactive principles, the ultra-high-pressure liquid chromatography-high-resolution mass spectrometry metabolite profiling of the dichloromethane stem bark fraction allowed the detection of more than 1000 components. Some of these could be assigned putatively to secondary metabolites previously isolated from the family Rutaceae. Generation of a molecular network based on MS(2) spectra indicated the presence of indolopyridoquinazoline alkaloids and related scaffolds. Efficient targeted isolation of these compounds was performed by geometric transfer of the analytical high-pressure liquid chromatography profiling conditions to preparative medium-pressure liquid chromatography. This yielded six new indolopyridoquinazoline alkaloids (5, 16, 19-22) that were assigned structurally. The medium-pressure liquid chromatography separations afforded additionally 16 other compounds. This work has demonstrated the usefulness of molecular networks to target the isolation of new natural products and the value of this approach for dereplication. A detailed analysis of the constituents of the stem bark of C. fontanesianus was conducted.


Phytochemical Analysis | 2017

UHPLC-MS-based HDAC Assay Applied to Bio-guided Microfractionation of Fungal Extracts

Vincent Zwick; Pierre-Marie Allard; Lucie Ory; Claudia Simões-Pires; Laurence Marcourt; Katia Gindro; Jean-Luc Wolfender; Muriel Cuendet

INTRODUCTION Histone deacetylases (HDAC) are considered as promising targets for cancer treatment. Today, four HDAC inhibitors, vorinostat, romidepsin, belinostat, and panobinostat, have been approved by the Food and Drug Administration (FDA) for cancer treatment, while others are in clinical trials. Among them, several are naturally occurring fungal metabolites. OBJECTIVE To develop and optimise an enzyme assay for bio-guided identification of HDAC inhibitors in fungal strains. METHODS Fluorescence and MS-based HDAC enzymatic assays were compared during the bio-guided fractionation of Penicillium griseofulvum. The MS-based approach was then optimised to evaluate HDAC selectivity using the human recombinant class I isoform HDAC1 and the class II isoform HDAC6. RESULTS Fluorescence-based assays have several drawbacks when used for bio-guided fractionation because of the native fluorescence and the trypsin inhibitory ability of compounds present in many extracts. The MS-based method led to the isolation of gliocladride C, which is selective for HDAC1 and salirepol, which showed an HDAC6 selectivity. Their activity and presence in P. griseofulvum is described here for the first time. CONCLUSION The UHPLC-ESI-MS/MS-based method using specific HDAC isoforms is suitable to isolate selective HDAC inhibitors by bio-guided fractionation of fungal strains. Also, it decreases potential interferences with natural products compared to the fluorescence-based assay.

Collaboration


Dive into the Pierre-Marie Allard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanny Roussi

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pieter Leyssen

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Françoise Guéritte

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florent Olivon

Institut de Chimie des Substances Naturelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge