Pierre Martinez
London Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre Martinez.
The New England Journal of Medicine | 2012
Marco Gerlinger; Andrew Rowan; Stuart Horswell; James Larkin; David Endesfelder; Eva Grönroos; Pierre Martinez; Nicholas Matthews; Aengus Stewart; Patrick Tarpey; Ignacio Varela; Benjamin Phillimore; Sharmin Begum; Neil Q. McDonald; Adam Butler; David Jones; Keiran Raine; Calli Latimer; Claudio R. Santos; Mahrokh Nohadani; Aron Charles Eklund; Bradley Spencer-Dene; Graham Clark; Lisa Pickering; Gordon Stamp; Martin Gore; Zoltan Szallasi; Julian Downward; P. Andrew Futreal; Charles Swanton
BACKGROUND Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. METHODS To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. RESULTS Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. CONCLUSIONS Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.).
Nature Genetics | 2014
Marco Gerlinger; Stuart Horswell; James Larkin; Andrew Rowan; Max Salm; Ignacio Varela; Rosalie Fisher; Nicholas McGranahan; Nicholas Matthews; Claudio R. Santos; Pierre Martinez; Benjamin Phillimore; Sharmin Begum; Adam Rabinowitz; Bradley Spencer-Dene; Sakshi Gulati; Paul A. Bates; Gordon Stamp; Lisa Pickering; Martin Gore; David Nicol; Steven Hazell; P. Andrew Futreal; Aengus Stewart; Charles Swanton
Clear cell renal carcinomas (ccRCCs) can display intratumor heterogeneity (ITH). We applied multiregion exome sequencing (M-seq) to resolve the genetic architecture and evolutionary histories of ten ccRCCs. Ultra-deep sequencing identified ITH in all cases. We found that 73–75% of identified ccRCC driver aberrations were subclonal, confounding estimates of driver mutation prevalence. ITH increased with the number of biopsies analyzed, without evidence of saturation in most tumors. Chromosome 3p loss and VHL aberrations were the only ubiquitous events. The proportion of C>T transitions at CpG sites increased during tumor progression. M-seq permits the temporal resolution of ccRCC evolution and refines mutational signatures occurring during tumor development.
Oncogene | 2015
Nnennaya Kanu; Eva Grönroos; Pierre Martinez; Rebecca A. Burrell; X. Yi Goh; J. Bartkova; A. Maya-Mendoza; M. Mistrík; Andrew Rowan; Harshil Patel; Adam Rabinowitz; Phillip East; G. Wilson; Claudio R. Santos; Nicholas McGranahan; Sakshi Gulati; Marco Gerlinger; Nicolai Juul Birkbak; Tejal Joshi; Ludmil B. Alexandrov; Michael R. Stratton; Thomas Powles; Nik Matthews; Paul A. Bates; Aengus Stewart; Zoltan Szallasi; James Larkin; J. Bartek; Charles Swanton
Defining mechanisms that generate intratumour heterogeneity and branched evolution may inspire novel therapeutic approaches to limit tumour diversity and adaptation. SETD2 (Su(var), Enhancer of zeste, Trithorax-domain containing 2) trimethylates histone-3 lysine-36 (H3K36me3) at sites of active transcription and is mutated in diverse tumour types, including clear cell renal carcinomas (ccRCCs). Distinct SETD2 mutations have been identified in spatially separated regions in ccRCC, indicative of intratumour heterogeneity. In this study, we have addressed the consequences of SETD2 loss-of-function through an integrated bioinformatics and functional genomics approach. We find that bi-allelic SETD2 aberrations are not associated with microsatellite instability in ccRCC. SETD2 depletion in ccRCC cells revealed aberrant and reduced nucleosome compaction and chromatin association of the key replication proteins minichromosome maintenance complex component (MCM7) and DNA polymerase δ hindering replication fork progression, and failure to load lens epithelium-derived growth factor and the Rad51 homologous recombination repair factor at DNA breaks. Consistent with these data, we observe chromosomal breakpoint locations are biased away from H3K36me3 sites in SETD2 wild-type ccRCCs relative to tumours with bi-allelic SETD2 aberrations and that H3K36me3-negative ccRCCs display elevated DNA damage in vivo. These data suggest a role for SETD2 in maintaining genome integrity through nucleosome stabilization, suppression of replication stress and the coordination of DNA repair.
The Journal of Pathology | 2012
Marco Gerlinger; Claudio R. Santos; Bradley Spencer-Dene; Pierre Martinez; David Endesfelder; Rebecca A. Burrell; Marcus Vetter; Ming Jiang; Rebecca E. Saunders; Gavin Kelly; Karl Dykema; Nathalie Rioux-Leclercq; Gordon Stamp; Jean Jacques Patard; James Larkin; Michael Howell; Charles Swanton
Clear cell renal cell carcinoma (ccRCC) is the most common pathological subtype of kidney cancer. Here, we integrated an unbiased genome‐wide RNA interference screen for ccRCC survival regulators with an analysis of recurrently overexpressed genes in ccRCC to identify new therapeutic targets in this disease. One of the most potent survival regulators, the monocarboxylate transporter MCT4 (SLC16A3), impaired ccRCC viability in all eight ccRCC lines tested and was the seventh most overexpressed gene in a meta‐analysis of five ccRCC expression datasets. MCT4 silencing impaired secretion of lactate generated through glycolysis and induced cell cycle arrest and apoptosis. Silencing MCT4 resulted in intracellular acidosis, and reduction in intracellular ATP production together with partial reversion of the Warburg effect in ccRCC cell lines. Intra‐tumoural heterogeneity in the intensity of MCT4 protein expression was observed in primary ccRCCs. MCT4 protein expression analysis based on the highest intensity of expression in primary ccRCCs was associated with poorer relapse‐free survival, whereas modal intensity correlated with Fuhrman nuclear grade. Consistent with the potential selection of subclones enriched for MCT4 expression during disease progression, MCT4 expression was greater at sites of metastatic disease. These data suggest that MCT4 may serve as a novel metabolic target to reverse the Warburg effect and limit disease progression in ccRCC. Copyright
European Urology | 2014
Sakshi Gulati; Pierre Martinez; Tejal Joshi; Nicolai Juul Birkbak; Claudio R. Santos; Andrew Rowan; Lisa Pickering; Martin Gore; James Larkin; Zoltan Szallasi; Paul A. Bates; Charles Swanton; Marco Gerlinger
Background Candidate biomarkers have been identified for clear cell renal cell carcinoma (ccRCC) patients, but most have not been validated. Objective To validate published ccRCC prognostic biomarkers in an independent patient cohort and to assess intratumour heterogeneity (ITH) of the most promising markers to guide biomarker optimisation. Design, setting, and participants Cancer-specific survival (CSS) for each of 28 identified genetic or transcriptomic biomarkers was assessed in 350 ccRCC patients. ITH was interrogated in a multiregion biopsy data set of 10 ccRCCs. Outcome measurements and statistical analysis Biomarker association with CSS was analysed by univariate and multivariate analyses. Results and limitations A total of 17 of 28 biomarkers (TP53 mutations; amplifications of chromosomes 8q, 12, 20q11.21q13.32, and 20 and deletions of 4p, 9p, 9p21.3p24.1, and 22q; low EDNRB and TSPAN7 expression and six gene expression signatures) were validated as predictors of poor CSS in univariate analysis. Tumour stage and the ccB expression signature were the only independent predictors in multivariate analysis. ITH of the ccB signature was identified in 8 of 10 tumours. Several genetic alterations that were significant in univariate analysis were enriched, and chromosomal instability indices were increased in samples expressing the ccB signature. The study may be underpowered to validate low-prevalence biomarkers. Conclusions The ccB signature was the only independent prognostic biomarker. Enrichment of multiple poor prognosis genetic alterations in ccB samples indicated that several events may be required to establish this aggressive phenotype, catalysed in some tumours by chromosomal instability. Multiregion assessment may improve the precision of this biomarker. Patient summary We evaluated the ability of published biomarkers to predict the survival of patients with clear cell kidney cancer in an independent patient cohort. Only one molecular test adds prognostic information to routine clinical assessments. This marker showed good and poor prognosis results within most individual cancers. Future biomarkers need to consider variation within tumours to improve accuracy.
The Journal of Pathology | 2013
Pierre Martinez; Nicolai Juul Birkbak; Marco Gerlinger; Nicholas McGranahan; Rebecca A. Burrell; Andrew Rowan; Tejal Joshi; Rosalie Fisher; James Larkin; Zoltan Szallasi; Charles Swanton
Intratumour heterogeneity (ITH) may foster tumour adaptation and compromise the efficacy of personalized medicine approaches. The scale of heterogeneity within a tumour (intratumour heterogeneity) relative to genetic differences between tumours (intertumour heterogeneity) is unknown. To address this, we obtained 48 biopsies from eight stage III and IV clear cell renal cell carcinomas (ccRCCs) and used DNA copy‐number analyses to compare biopsies from the same tumour with 440 single tumour biopsies from the Cancer Genome Atlas (TCGA). Unsupervised hierarchical clustering of TCGA and multi‐region ccRCC samples revealed segregation of samples from the same tumour into unrelated clusters; 25% of multi‐region samples appeared more similar to unrelated samples than to any other sample originating from the same tumour. We found that the majority of recurrent DNA copy number driver aberrations in single biopsies were not present ubiquitously in late‐stage ccRCCs and were likely to represent subclonal events acquired during tumour progression. Such heterogeneous subclonal genetic alterations within individual tumours may impair the identification of robust ccRCC molecular subtypes classified by distinct copy number alterations and clinical outcomes. The co‐existence of distinct subclonal copy number events in different regions of individual tumours reflects the diversification of individual ccRCCs through multiple evolutionary routes and may contribute to tumour sampling bias and impact upon tumour progression and clinical outcome. Copyright
Gut | 2016
Danielle L. Lavery; Pierre Martinez; Biancastella Cereser; Marco Novelli; Manuel Rodriguez-Justo; Sybren L. Meijer; Trevor A. Graham; Stuart A. McDonald; Nicholas A. Wright; Marnix Jansen
Objective Barretts oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barretts oesophagus is exclusive to columnar epithelium with goblet cells. Design We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barretts segment. Clonal expansions in Barretts mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. Results By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barretts segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic (‘cardia-type’) columnar metaplasia without goblet cells. Conclusion Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barretts oesophagus.
Gut | 2016
Margriet R. Timmer; Pierre Martinez; Chiu T. Lau; Wytske Westra; Silvia Calpe; Agnieszka M. Rygiel; Wilda Rosmolen; Sybren L. Meijer; Fiebo J. ten Kate; Marcel G. W. Dijkgraaf; Rosalie C. Mallant-Hent; Anton H J Naber; Arnoud H. Van Oijen; Lubbertus C. Baak; Pieter Scholten; Clarisse Bohmer; Paul Fockens; Carlo C. Maley; Trevor A. Graham; Jacques J. Bergman; Kausilia K. Krishnadath
Objective The risk of developing adenocarcinoma in non-dysplastic Barretts oesophagus is low and difficult to predict. Accurate tools for risk stratification are needed to increase the efficiency of surveillance. We aimed to develop a prediction model for progression using clinical variables and genetic markers. Methods In a prospective cohort of patients with non-dysplastic Barretts oesophagus, we evaluated six molecular markers: p16, p53, Her-2/neu, 20q, MYC and aneusomy by DNA fluorescence in situ hybridisation on brush cytology specimens. Primary study outcomes were the development of high-grade dysplasia or oesophageal adenocarcinoma. The most predictive clinical variables and markers were determined using Cox proportional-hazards models, receiver operating characteristic curves and a leave-one-out analysis. Results A total of 428 patients participated (345 men; median age 60 years) with a cumulative follow-up of 2019 patient-years (median 45 months per patient). Of these patients, 22 progressed; nine developed high-grade dysplasia and 13 oesophageal adenocarcinoma. The clinical variables, age and circumferential Barretts length, and the markers, p16 loss, MYC gain and aneusomy, were significantly associated with progression on univariate analysis. We defined an ‘Abnormal Marker Count’ that counted abnormalities in p16, MYC and aneusomy, which significantly improved risk prediction beyond using just age and Barretts length. In multivariate analysis, these three factors identified a high-risk group with an 8.7-fold (95% CI 2.6 to 29.8) increased HR when compared with the low-risk group, with an area under the curve of 0.76 (95% CI 0.66 to 0.86). Conclusions A prediction model based on age, Barretts length and the markers p16, MYC and aneusomy determines progression risk in non-dysplastic Barretts oesophagus.
Scientific Reports | 2013
Pierre Martinez; Nicholas McGranahan; Nicolai Juul Birkbak; Marco Gerlinger; Charles Swanton
Despite recent progress thanks to next-generation sequencing technologies, personalised cancer medicine is still hampered by intra-tumour heterogeneity and drug resistance. As most patients with advanced metastatic disease face poor survival, there is need to improve early diagnosis. Analysing circulating tumour DNA (ctDNA) might represent a non-invasive method to detect mutations in patients, facilitating early detection. In this article, we define reduced gene panels from publicly available datasets as a first step to assess and optimise the potential of targeted ctDNA scans for early tumour detection. Dividing 4,467 samples into one discovery and two independent validation cohorts, we show that up to 76% of 10 cancer types harbour at least one mutation in a panel of only 25 genes, with high sensitivity across most tumour types. Our analyses demonstrate that targeting “hotspot” regions would introduce biases towards in-frame mutations and would compromise the reproducibility of tumour detection.
The Journal of Pathology | 2013
Pierre Martinez; Nicolai Juul Birkbak; Marco Gerlinger; Nicholas McGranahan; Rebecca Burrell; Andrew Rowan; Tejal Joshi; Rosalie Fisher; James Larkin; Zoltan Szallasi; Charles Swanton
Intratumour heterogeneity (ITH) may foster tumour adaptation and compromise the efficacy of personalized medicine approaches. The scale of heterogeneity within a tumour (intratumour heterogeneity) relative to genetic differences between tumours (intertumour heterogeneity) is unknown. To address this, we obtained 48 biopsies from eight stage III and IV clear cell renal cell carcinomas (ccRCCs) and used DNA copy‐number analyses to compare biopsies from the same tumour with 440 single tumour biopsies from the Cancer Genome Atlas (TCGA). Unsupervised hierarchical clustering of TCGA and multi‐region ccRCC samples revealed segregation of samples from the same tumour into unrelated clusters; 25% of multi‐region samples appeared more similar to unrelated samples than to any other sample originating from the same tumour. We found that the majority of recurrent DNA copy number driver aberrations in single biopsies were not present ubiquitously in late‐stage ccRCCs and were likely to represent subclonal events acquired during tumour progression. Such heterogeneous subclonal genetic alterations within individual tumours may impair the identification of robust ccRCC molecular subtypes classified by distinct copy number alterations and clinical outcomes. The co‐existence of distinct subclonal copy number events in different regions of individual tumours reflects the diversification of individual ccRCCs through multiple evolutionary routes and may contribute to tumour sampling bias and impact upon tumour progression and clinical outcome. Copyright