Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre Noziere is active.

Publication


Featured researches published by Pierre Noziere.


Animal Feed Science and Technology | 1996

Validation of in sacco method: influence of sampling site, nylon bag or rumen contents, on fibrolytic activity of solid-associated microorganisms

Pierre Noziere; Brigitte Michalet-Doreau

Three ruminally cannulated cows, fed twice daily with a 70:30 forage:concentrate diet, were used to investigate the differences in fibrolytic activity of solid-associated microorganisms between nylon bags and rumen contents. Two different grass hays (regrowth and late harvested) were incubated in ruminal nylon bags. After 2 h or 23 h incubation time, pH was measured in bags and rumen contents, and enzymes of solid-associated microorganisms were extracted from bag residues and surrounding digesta by grinding, freezing, defrosting and sonication. Xylanase, avicelase, β-D-xylosidase and β-D-glucosidase activities were measured. Activities were lower in bag residues than in rumen digesta, and differences were greater after 2 h than after 23 h incubation time. Causes of these differences are discussed. For each incubation time and each enzyme, the differences in solid-associated microorganisms activities between rumen and bags contents were independent of the quality of hay in the bag. Thus the lower fibrolytic activity inside the bags may account for an underestimation of in vivo ruminal fiber degradation by the in sacco method, but this underestimation may be similar whatever the nature and content of forage cell walls.


Journal of Animal Science | 2010

Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep.

A. Lettat; Pierre Noziere; Mathieu Silberberg; D. P. Morgavi; C. Berger; C. Martin

A study was conducted to determine the feasibility to induce rumen acidosis with propionate, butyrate, or lactate as the major fermentation end products. Three rumen-cannulated Texel wethers were used in a 3 x 3 Latin square design. Each period consisted of 11 d of adaptation where wethers were daily fed at 90% of ad libitum intake a hay and wheat-based concentrate diet (4:1 ratio on a DM basis) in 2 equal portions followed by 3 d of acidosis induction. During the challenge, the morning feeding was replaced by an intraruminal supply of wheat (readily fermentable starch), corn (slowly fermentable starch), or beet pulp (easily digestible fiber), dosed at 1.2% of BW. Ruminal liquid samples were taken daily 1 h before (-1) and 1, 3, 5, and 6 h after intraruminal feed supply to measure pH, VFA, and lactic acid concentration. The differences between treatments accentuated throughout the 3-d challenge, being maximal and significant on d 3. Indeed, 6 h after the third day of the challenge, mean ruminal pH was less for wheat (4.85) than for corn (5.61; P = 0.008) and beet pulp (6.09; P = 0.001), and total VFA tended to be less for wheat (48.7 mM) than for corn and beet pulp (84.7 mM on average; P = 0.08). At the same time, the proportion of acetate was greater for wheat than for corn (75.5 and 62.2%, respectively; P = 0.005) but did not differ from beet pulp challenge (69.0%). The proportion of propionate was greatest for beet pulp compared with corn and wheat (21.0, 17.3, and 12.1%, respectively; P = 0.03), whereas the butyrate proportion was greatest for corn, intermediate for wheat, and least for beet pulp (16.3, 10.8, and 8.3%, respectively; P = 0.05). Lactate concentration was greatest for wheat (45.5 mM) compared with corn and beet pulp (8.3 mM on average; P = 0.01). Under our experimental conditions, ruminal lactic acidosis was successfully induced by wheat, whereas butyric and propionic subacute ruminal acidosis were respectively provoked by corn and beet pulp. We developed an original model that promoted differentiated fermentation pathways in the rumen of sheep. It will be used to study the ruminal microbiome changes involved in different acidosis situations.


Animal | 2010

Carbohydrate quantitative digestion and absorption in ruminants: from feed starch and fibre to nutrients available for tissues

Pierre Noziere; I. Ortigues-Marty; C. Loncke; Daniel Sauvant

Carbohydrates are the main source of energy in ruminants. Their site, extent and kinetics of digestion highly impact the amount and profile of nutrients delivered to peripheral tissues, and the responses of the animal, i.e. ingestion, efficiency of production, N and methane excretion, quality of products and welfare. Development of multi-objective feed evaluation systems thus requires a more integrated quantitative knowledge on carbohydrate digestion and yield of terminal products, as well as on their metabolism by splanchnic tissues. The objective of this paper is to review (i) quantitative knowledge on fibre, starch and sugar digestion, volatile fatty acids (VFA) and glucose production and splanchnic metabolism and (ii) modelling approaches which aim at representing and/or predicting nutrient fluxes in the digestive tract, portal and hepatic drainage. It shows that the representation of carbohydrate digestion and VFA yield is relatively homogeneous among models. Although published quantitative comparisons of these models are scarce, they stress that prediction of fibre digestion and VFA yield and composition is still not good enough for use in feed formulation, whereas prediction of microbial N yield and ruminal starch digestion seems to be more satisfactory. Uncertainties on VFA stoichiometric coefficients and absorption rates may partly explain the poor predictions of VFA. Hardly any mechanistic models have been developed on portal-drained viscera (PDV) metabolism whereas a few exist for liver metabolism. A qualitative comparison of these models is presented. Most are focused on dairy cows and their level of aggregation in the representation of nutrient fluxes and metabolism highly differs depending on their objectives. Quantitative comparison of these models is still lacking. However, recent advances have been achieved with the empirical prediction of VFA and glucose production and fluxes through PDV and liver based on the current INRA feed evaluation system. These advances are presented. They illustrate that empirical prediction of ruminal VFA and intestinal glucose production can be evaluated by comparison with measured net portal net fluxes. We also illustrate the potential synergy between empirical and mechanistic modelling. It is concluded that concomitant empirical and mechanistic approach may likely help to progress towards development of multi-objective feed evaluation systems based on nutrient fluxes.


British Journal of Nutrition | 2000

Effect of composition of ruminally-infused short-chain fatty acids on net fluxes of nutrients across portal-drained viscera in underfed ewes.

Pierre Noziere; C. Martin; Didier Rémond; N.B. Kristensen; Richard Bernard; M. Doreau

Four ewes, each fitted with a rumen cannula and with catheters in the mesenteric artery and portal and mesenteric veins, received continuous intrarumen infusions of water or of short-chain fatty acids (SCFA). SCFA infusions were isoenergetic (83 kJ/h) and provided rumen molar proportions (acetate:propionate:butyrate) of 70:20:10, 50:40:10 or 50:20:30. The rumen SCFA production rate with the basal diet was 90.0, 23.1 and 8.8 mmol/h for acetate, propionate and butyrate respectively. Portal net fluxes indicated that 74, 67 and 22-30% of infused acetate, propionate and butyrate respectively, reached the portal vein. Portal net release of beta-hydroxybutyrate increased with SCFA infusions, irrespective of the amount of butyrate infused. Portal net release of lactate decreased with high-butyrate infusion. Portal net uptake of glucose increased with the SCFA infusions. In ewes infused with water, a portal net uptake of total amino acids (AA) was observed. SCFA infusions decreased the uptake of nonessential AA (glutamate, glycine, but not glutamine) and increased the net release of tyrosine and essential AA (isoleucine, leucine). Portal net fluxes of AA were similar with both high-acetate and high-propionate infusions. Lower net uptake of glutamine and net release of most essential AA and some nonessential AA were observed with the high-butyrate infusion. Energetic summation of portal net release was not significantly different between the three SCFA infusions, although it tended to be lower with high-butyrate infusion. This may be related to the higher trophic effect of butyrate on the digestive mucosa.


Journal of Animal Science | 2009

Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (β-hydroxybutyrate, lactate) from dietary characteristics in ruminants: A meta-analysis approach

C. Loncke; I. Ortigues-Marty; J. Vernet; Hélène Lapierre; Daniel Sauvant; Pierre Noziere

The current trend in energy feeding systems for ruminants toward a nutrient-based system requires dietary energy supply to be determined in terms of amount and nature of absorbed energy-yielding nutrients. The objective of this study was to establish response equations on the net portal appearance (NPA) of VFA and glucose, and their secondary metabolites beta-hydroxybutyrate (BHBA) and lactate, to changes in intake level and chemical dietary characteristics based on the Institut National de la Recherche Agronomique Feed Evaluation System for Ruminants. Meta-analyses were applied on published data compiled from the FLORA database, which pools the results on net splanchnic nutrient fluxes in multi-catheterized ruminants from international publications. For each nutrient, several prediction variables were tested. We obtained robust models for intakes up to 30 g of DM x d(-1) x kg of BW(-1) and diets containing less than 70 g of concentrate per 100 g of DM. These models were designed to predict the NPA (mmol x h(-1) x kg of BW(-1)) of total VFA based on the amount of ruminally fermented OM (RfOM) intake [adjusted R(2) (R(2)(adj)) = 0.95; residual means square errors (RMSE) = 0.24], to predict VFA profile (mol/100 mol of total VFA) based on type of RfOM intake (acetate: R(2)(adj) = 0.85, RMSE = 2.2; propionate: R(2)(adj) = 0.76, RMSE = 2.2; butyrate: R(2)(adj) = 0.76, RMSE = 1.09), and to predict the NPA (mmol x h(-1) x kg of BW(-1)) of glucose based on the starch digested in the small intestine independent of ruminant species, and while presenting no interfering factors on the residuals and individual slopes. The model predicting the NPA (mmol x h(-1) x kg of BW(-1)) of BHBA based on the amount of RfOM intake (R(2)(adj) = 0.91; RMSE = 0.036) was species-dependent, and the model predicting NPA (mmol x h(-1) x kg of BW(-1)) of lactate based on starch digested in the rumen (R(2)(adj) = 0.77; RMSE = 0.042) presented a wide dispersion. However, the NPA (mmol x h(-1) x kg of BW(-1)) of BHBA was related to the NPA of both butyrate (R(2)(adj) = 0.85; RMSE = 0.054) and acetate (R(2)(adj) = 0.85; RMSE = 0.052), and the NPA (mmol x h(-1) x kg of BW (-1)) of lactate was related to the NPA of propionate (R(2)(adj) = 0.51; RMSE = 0.096). This research showed that it is possible to accurately predict the amount and nature of absorbed nutrient fluxes based on dietary characteristics in both sheep and cattle. This work aims to quantify the consequences of digestion and portal-drained viscera metabolism on nutrient availability. These results can provide deeper insight into biological processes and help develop improved tools for dietary formulation.


Small Ruminant Research | 2003

Consequences of underfeeding on digestion and absorption in sheep

M. Doreau; Brigitte Michalet-Doreau; P. Grimaud; N. Atti; Pierre Noziere

Abstract The negative relationship between intake and digestibility of an unchanging diet has been widely described. The review of the different processes of ruminal digestion shows that the main cause of the variation in digestibility is the retention time of particles in the rumen. However, most experiments have been carried out at levels of intake higher than maintenance. For this reason, a special attention is paid to experiments carried out at low levels of intake. In these conditions, the response of digestibility to a decrease in intake is variable: it can increase, be stable or decrease. Up till now, it has not been possible to determine the animal or nutritional factors which influence the way of variation, and especially the unexpected decrease in digestibility. However, it has been clearly shown that these decreases are not due to an insufficient retention time of particles in the rumen, or to an insufficient reduction of particle size. Differences in microbial activity have not been exhibited by in situ measurements. It is hypothesised that a reduction of bacterial growth, or of the expression of microbial degradation potential occurs at very low intakes, but mechanisms are still not elucidated. The decrease in weight and oxygen uptake by the digestive tract contributes to the adaptation of animals maintenance requirements. At short term, the proportion of metabolisable energy intake which is recovered in the portal vein remains unchanged when animals are underfed but the supply of absorbable amino acids (AAs) cannot keep up with the gut requirements. The consequences of underfeeding on nutrition and absorption do not differ between small ruminants and cattle.


BMC Microbiology | 2012

Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

Abderzak Lettat; Pierre Noziere; Mathieu Silberberg; D. P. Morgavi; Claudette Berger; C. Martin

BackgroundRuminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis.ResultsLactic acidosis, butyric and propionic subacute ruminal acidosis (SARA) were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C) or supplemented with Propionibacterium P63 alone (P) or combined with L. plantarum (Lp + P) or L. rhamnosus (Lr + P). Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure.ConclusionThis work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated.


The Journal of Agricultural Science | 2003

Effect of silica content on rice straw ruminal degradation

Ahoefa Agbagla-Dohnani; Pierre Noziere; B. Gaillard-Martinie; M. Puard; M. Doreau

The present study investigated how increasing silica content modifies the chemical and morphological characteristics and microbial degradation of rice straw. Two rice straws grown on culture media with different silica contents were collected and analysed for chemical and morphological composition and ultrastructure. Silica content (g/kg DM) of the two straws was high (98·0, straw H) and low (0·0, not detected, straw L). The ground (2 mm) straws were incubated in the rumen of three ruminally cannulated cows for 4, 8, 16, 24, 48 and 96 h for in sacco degradability measurements. The main fractions (stem, leaf sheath and blade) of each straw were incubated for 24 h. Kinetics were fitted to an exponential model with lag time. Scanning electron microscopy was used to examine intact fragments of stems and fragments incubated for 6, 24, 72 and 96 h in cow rumen. X-ray analysis was carried out on non-incubated fragments for silica mapping. A reduction of stem content from 320 to 270 g/kg straw, and an increase in leaf sheath content from 360 to 400 g/kg straw, were found for an increase in silica content from 0 to 100 g/kg DM. Chemical composition differed little between straws H and L, except for ash and silica contents. The ash originated mainly from the leaves and increased with silica content from 70 to 140 g/kg DM. The DM degradability was lower in the H than in the L straw. This reduction came mainly from a lower non-NDF component degradation in straw H. Stems were more degraded than leaf fractions for DM, NDF and non-NDF components; their degradation was depressed in the H straw. X-ray analysis showed that the deposition of silica on the stem epidermis was different, with a thick layer on H stems and no deposition on L stem surfaces. As a consequence, microbial colonization and degradation were faster on the epidermis of straw L. Epidermal silica did not hinder degradation from the internal cavity.


Animal | 2011

In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach

Pierre Noziere; F. Glasser; Daniel Sauvant

Despite their major contribution to the energy supply of ruminants, the production of volatile fatty acids (VFA) in the rumen is still poorly predicted by rumen models. We have developed an empirical approach, based on the interpretation of large bibliographic databases gathering published in vivo measurements of ruminal VFA production rate (PR), rates of duodenal and faecal digestion and molar percentages of VFA in the rumen. These databases, covering a wide range of intake levels and dietary composition, were studied by meta-analysis using within-experiment models. We established models to quantify response laws of total VFA-PR and individual VFA molar percentages in the rumen to variations in intake level and dietary composition. The rumen fermentable organic matter (RfOM) intake, estimated from detailed knowledge of the chemical composition of diets according to INRA Feed Tables, appears as an accurate explanatory variable of measured total VFA-PR, with an average increment of 8.03 ± 0.64 mol total VFA/kg RfOM intake. Similar results were obtained when total VFA-PR was estimated from measured apparent RfOM (total VFA-PR/RfOM averaging 8.3 ± 1.2 mol/kg). The VFA molar percentages were related to dry matter intake and measured digestible organic matter (OM), digestible NDF and rumen starch digestibility, with root mean square error of 1.23, 1.45, 0.88 and 0.41 mol/100 mol total VFA for acetate, propionate, butyrate and minor VFA, respectively, with no effect of pH on the residuals. Stoichiometry coefficients were calculated from the slopes of the relationships between individual VFA production (estimated from measured apparent RfOM and individual VFA molar percentages) and measured fermented fractions. Coefficients averaged, respectively, 66, 17, 14 and 3 mol/100 mol for NDF; 41, 44, 12 and 4 mol/100 mol for starch; and 46, 35, 13 and 6 mol/100 mol for crude protein. Their use to predict VFA molar percentages appear relevant for most dietary conditions, that is, when the digested NDF/digested OM ratio exceeded 0.12. This study provides a quantitative review on VFA yield in the rumen. It contributes to the development of feed evaluation systems based on nutrient fluxes.


Animal | 2014

Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach

J. Guyader; Maguy Eugène; Pierre Noziere; D. P. Morgavi; M. Doreau; C. Martin

A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

Collaboration


Dive into the Pierre Noziere's collaboration.

Top Co-Authors

Avatar

Jean Vernet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. Doreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

I. Ortigues-Marty

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

C. Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Rémond

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

F. Glasser

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

D. P. Morgavi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Brigitte Michalet-Doreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bruno Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

C. Poncet

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge