Pierre P.D. Kondiah
University of the Witwatersrand
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pierre P.D. Kondiah.
Molecules | 2016
Pariksha J. Kondiah; Yahya E. Choonara; Pierre P.D. Kondiah; Thashree Marimuthu; Pradeep Kumar; Lisa C. du Toit; Viness Pillay
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Expert Review of Pharmacoeconomics & Outcomes Research | 2016
Yahya E. Choonara; Lisa C. du Toit; Pradeep Kumar; Pierre P.D. Kondiah; Viness Pillay
3D-printing (3DP) is the art and science of printing in a new dimension using 3D printers to transform 3D computer aided designs (CAD) into life-changing products. This includes the design of more effective and patient-friendly pharmaceutical products as well as bio-inspired medical devices. It is poised as the next technology revolution for the pharmaceutical and medical-device industries. After decorous implementation scientists in collaboration with CAD designers have produced innovative medical devices ranging from pharmaceutical tablets to surgical transplants of the human face and skull, spinal implants, prosthetics, human organs and other biomaterials. While 3DP may be cost-efficient, a limitation exists in the availability of 3D printable biomaterials for most applications. In addition, the loss of skilled labor in producing medical devices such as prosthetics and other devices may affect developing economies. This review objectively explores the potential growth and impact of 3DP costs in the medical industry.
Carbohydrate Polymers | 2017
Ravindra V. Badhe; Divya Bijukumar; Dharmesh R. Chejara; Mostafa Mabrouk; Yahya E. Choonara; Pradeep Kumar; Lisa C. du Toit; Pierre P.D. Kondiah; Viness Pillay
A composite chitosan-gelatin macroporous hydrogel-based scaffold with bi-layered tubular architecture was engineered by solvent casting-co-particulate leaching. The scaffold constituted an inner macroporous layer concealed by a non-porous outer layer mimicking the 3D matrix of blood vessels with cellular adhesion and proliferation. The scaffold was evaluated for its morphological, physicochemical, physicomechanical and biodurability properties employing SEM, FTIR, DSC, XRD, porositometry, rheology and texture analysis. The fluid uptake and biodegradation in the presence of lysozymes was also investigated. Cellular attachment and proliferation was analysed using human dermal fibroblasts (HDF-a) seeded onto the scaffold and evaluated by MTT assay, SEM, and confocal microscopy. Results demonstrated that the scaffold had a desirable tensile strength=95.81±11kPa, elongation at break 112.5±13%, porosity 82% and pores between 100 and 230μm, 50% in vitro biodegradation at day 16 and proliferated fibroblasts over 20 days. These results demonstrate that scaffold may be an excellent tubular archetype for blood vessel tissue engineering.
International Journal of Pharmaceutics | 2013
Pierre P.D. Kondiah; Lomas K. Tomar; Charu Tyagi; Yahya E. Choonara; Girish Modi; Lisa C. du Toit; Pradeep Kumar; Viness Pillay
pH-sensitive microparticles were prepared using trimethyl-chitosan (TMC), poly(ethylene glycol)dimethacrylate (PEGDMA) and methacrylic acid (MAA) by free radical suspension polymerization, for the oral delivery of interferon-β (INF-β). The microparticles were subsequently compressed into a suitable oral tablet formulation. A Box-Behnken experimental design was employed for generating a series of formulations with varying concentrations of TMC (0.05-0.5 g/100 mL) and percentage crosslinker (polyethylene glycol diacrylate) (3-8%, w/w of monomers), for establishment of an optimized TMC-PEGDMA-MAA copolymeric microparticles. For pragmatism, insulin was initially employed as the model peptide for undertaking the preliminary experimentation and the optimized formulation was subsequently evaluated using INF-β. The prepared copolymeric microparticulate system was characterized for its morphological, porositometric and mucoadhesive properties. The optimized microparticles with 0.5 g/100 mL TMC and 3% crosslinker had an INF-β loading efficiency of 53.25%. The in vitro release of INF-β was recorded at 74% and 3% in intestinal (pH 6.8) and gastric (pH 1.2) pH from the oral tablet formulation, respectively. The tablet was further evaluated for plasma concentration of INF-β in the New Zealand White rabbit, and compared to a known subcutaneous formulation. The system showed an astounding effective release profile over 24h with higher INF-β plasma concentrations compared with the subcutaneous injection formulation.
Polymers | 2016
Az-Zamakhshariy Zardad; Yahya E. Choonara; Lisa C. du Toit; Pradeep Kumar; Mostafa Mabrouk; Pierre P.D. Kondiah; Viness Pillay
There has been an exponential increase in research into the development of thermal- and ultrasound-activated delivery systems for cancer therapy. The majority of researchers employ polymer technology that responds to environmental stimuli some of which are physiologically induced such as temperature, pH, as well as electrical impulses, which are considered as internal stimuli. External stimuli include ultrasound, light, laser, and magnetic induction. Biodegradable polymers may possess thermoresponsive and/or ultrasound-responsive properties that can complement cancer therapy through sonoporation and hyperthermia by means of High Intensity Focused Ultrasound (HIFU). Thermoresponsive and other stimuli-responsive polymers employed in drug delivery systems can be activated via ultrasound stimulation. Polyethylene oxide/polypropylene oxide co-block or triblock polymers and polymethacrylates are thermal- and pH-responsive polymer groups, respectively but both have proven to have successful activity and contribution in chemotherapy when exposed to ultrasound stimulation. This review focused on collating thermal- and ultrasound-responsive delivery systems, and combined thermo-ultrasonic responsive systems; and elaborating on the advantages, as well as shortcomings, of these systems in cancer chemotherapy. The mechanisms of these systems are explicated through their physical alteration when exposed to the corresponding stimuli. The properties they possess and the modifications that enhance the mechanism of chemotherapeutic drug delivery from systems are discussed, and the concept of pseudo-ultrasound responsive systems is introduced.
Journal of Nanomaterials | 2016
Patrick P. Komane; Yahya E. Choonara; Lisa C. du Toit; Pradeep Kumar; Pierre P.D. Kondiah; Girish Modi; Viness Pillay
Extensive research on carbon nanotubes has been conducted due to their excellent physicochemical properties. Based on their outstanding physicochemical properties, carbon nanotubes have the potential to be employed as theranostic tools for neurological pathologies such as Alzheimer’s disease and Parkinson’s disease including ischemic stroke diagnosis and treatment. Stroke is currently regarded as the third root cause of death and the leading source of immobility around the globe. The development and improvement of efficient and effective procedures for central nervous system disease diagnosis and treatment is necessitated. The main aim of this review is to discuss the application of nanotechnology, specifically carbon nanotubes, to the diagnosis and treatment of neurological disorders with an emphasis on ischemic stroke. Areas covered include the conventional current diagnosis and treatment of neurological disorders, as well as a critical review of the application of carbon nanotubes in the diagnosis and treatment of ischemic stroke, covering areas such as functionalization of carbon nanotubes and carbon nanotube-based biosensors. A broad perspective on carbon nanotube stimuli-responsiveness, carbon nanotube toxicity, and commercially available carbon nanotubes is provided. Potential future studies employing carbon nanotubes have been discussed, evaluating their extent of advancement in the diagnosis and treatment of neurological and ischemic disorders.
International Journal of Pharmaceutics | 2016
Simphiwe Mavuso; Yahya E. Choonara; Thashree Marimuthu; Pradeep Kumar; Lisa C. du Toit; Pierre P.D. Kondiah; Viness Pillay
A novel dual pH/redox-responsive polymeric nanoliposome system (NLs) loaded with a copper-liganded bioactive complex was prepared and designed as a controlled delivery system for the management of inflammation. The NLs were synthesised after preparation of the copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, and the dual pH/redox responsive biopolymer respectively. The methodology undertaken for the development of the drug delivery system involved coordination of the bioactive to Copper (II), preparation of dual pH/redox responsive biopolymer, and the synthesis of dual pH/redox nanoliposomes. Characterisations of the prepared copper-liganded bioactive [Copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, dual pH/redox responsive biopolymer (Eudragit E100-cystamine) and [(Cu(glygly)(PS)]-loaded NLs were carried out using spectroscopic and physicochemical techniques. Results indicated a high inflammatory/oxidant inhibitory activity of [Cu(glygly)(PS)] in comparison to the free PS drug. The [Cu(glygly)(PS)] complex exhibited a significant free radical-scavenging activity (60.1±1.2%) and lipoxygenase (LOX-5) inhibitory activity (36.6±1.3%) in comparison to PS which resulted in activity of 4.4±1.4% and inhibition of 6.1±2.6% respectively. The [Cu(glygly)(PS)] loaded NLs demonstrated low release profiles of 22.9±5.4% in 6h at pH 7.4, in comparison to a significant accelerated release at pH 5 in a reducing environment of 75.9±3.7% over 6h duration. Results suggest that the novel copper-liganded bioactive delivery system with controlled drug release mechanism could serve as a potential drug delivery system candidate in the management of inflammation.
Polymers | 2017
Angus R. Hibbins; Pradeep Kumar; Yahya E. Choonara; Pierre P.D. Kondiah; Thashree Marimuthu; Lisa C. du Toit; Viness Pillay
A pH-responsive hydrogel system was prepared by free radical polymerization of acrylamide and methyl acrylic acid in the presence of N-N′-methylene bisacrylamide. Sodium bicarbonate was further applied as a blowing agent, which afforded a porous hydrogel structure. The hydrogel system achieved a constant super swelling rate within simulated intestinal buffer (~4%/min) and remained relatively static within simulated gastric buffer (~0.8%/min). The hydrogel system was able to achieve matrix resilience greater than 30% under a relatively high strain of 40%. In addition, the hydrogel system demonstrated significant swelling properties in response to simulated intestinal environmental over 24 h, with contrasting characteristics in simulated gastric buffer. The hydrogel demonstrated type IV isotherm porosity characteristics, with remarkable MRI and SEM variations in gastric and intestinal simulated fluids. Drug loading was observed to be greater than 98% using theophylline as a prototype drug, evaluating its controlled release kinetics over 24 h. The hydrogel exhibited substantial pH-responsive activity, which could be used as a versatile platform for targeted release of gastric-sensitive therapeutics to the small intestine.
International Journal of Pharmaceutics | 2017
Pariksha J. Kondiah; Yahya E. Choonara; Pierre P.D. Kondiah; Pradeep Kumar; Thashree Marimuthu; Lisa C. du Toit; Viness Pillay
A pseudo-bone thermo-gel was synthesized and evaluated for its physicochemical, mechanical and rheological properties, with its application to treat small bone fractures. The pseudo-bone thermo-gel was proven to have thermo-responsive properties, behaving as a solution in temperatures below 25°C, and forming a gelling technology when maintained at physiological conditions. Poly propylene fumerate (PPF), Pluronic F127 and PEG-PCL-PEG were strategically blended, obtaining a thermo-responsive delivery system, to mimic the mechanical properties of bone with sufficient matrix hardness and resilience. A Biopharmaceutics Classification System (BCS) class II drug, simvastatin, was loaded in the pseudo-bone thermo-gel, selected for its bone healing properties. In vitro release analysis was undertaken on a series of experimental formulations, with the ideal formulations obtaining its maximum controlled drug release profile up to 14days. Ex vivo studies were undertaken on an induced 4mm diameter butterfly-fractured osteoporotic human clavicle bone samples. X-ray, ultrasound as well as textural analysis, undertaken on the fractured bones before and after treatment displayed significant bone filling, matrix hardening and matrix resilience properties. These characteristics of the pseudo-bone thermo-gel thus proved significant potential for application in small bone fractures.
International Journal of Polymeric Materials | 2016
Margaret Siyawamwaya; Yahya E. Choonara; Pradeep Kumar; Pierre P.D. Kondiah; Lisa C. du Toit; Viness Pillay
ABSTRACT A polyelectrolyte complex (PEC) was produced and validated from humic acid and polyquaternium-10 using a solution-blend method. Humic acid was used based on its properties of encapsulating hydrophilic and hydrophobic drugs while polyquaternium-10 provided high swellability in aqueous media. PECs at varying pH values were prepared and characterized for their physicochemical properties. Efavirenz (model drug) was used to assess the performance of the PEC. Results revealed that drug-loading ranged between 11.9–23.91% and PEC formation was due to ionic reactions between the amino (polyquaternium-10) and carboxylic (humic acid) groups. This formed a fibrilla PEC complex that provided controlled release of efavirenz. GRAPHICAL ABSTRACT